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a b s t r a c t 

Polymer electrolyte membrane (PEM) fuel cells are electrochemical devices that directly convert the chemical 

energy stored in fuel into electrical energy with a practical conversion efficiency as high as 65%. In the past years, 

significant progress has been made in PEM fuel cell commercialization. By 2019, there were over 19,000 fuel cell 

electric vehicles (FCEV) and 340 hydrogen refueling stations (HRF) in the U.S. (~8,000 and 44, respectively), 

Japan (~3,600 and 112, respectively), South Korea (~5,000 and 34, respectively), Europe (~2,500 and 140, 

respectively), and China (~110 and 12, respectively). Japan, South Korea, and China plan to build approximately 

3,000 HRF stations by 2030. In 2019, Hyundai Nexo and Toyota Mirai accounted for approximately 63% and 

32% of the total sales, with a driving range of 380 and 312 miles and a mile per gallon (MPGe) of 65 and 67, 

respectively. Fundamentals of PEM fuel cells play a crucial role in the technological advancement to improve 

fuel cell performance/durability and reduce cost. Several key aspects for fuel cell design, operational control, 

and material development, such as durability, electrocatalyst materials, water and thermal management, dynamic 

operation, and cold start, are briefly explained in this work. Machine learning and artificial intelligence (AI) have 

received increasing attention in material/energy development. This review also discusses their applications and 

potential in the development of fundamental knowledge and correlations, material selection and improvement, 

cell design and optimization, system control, power management, and monitoring of operation health for PEM 

fuel cells, along with main physics in PEM fuel cells for physics-informed machine learning. The objective of 

this review is three fold: (1) to present the most recent status of PEM fuel cell applications in the portable, 

stationary, and transportation sectors; (2) to describe the important fundamentals for the further advancement of 

fuel cell technology in terms of design and control optimization, cost reduction, and durability improvement; and 

(3) to explain machine learning, physics-informed deep learning, and AI methods and describe their significant 

potentials in PEM fuel cell research and development (R&D). 
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Fig. 1. (a). Fuel cell power shipped in the U.S. department of energy (DOE) report [1] ; and (b) PEM fuel cell structure [2] . 
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. Introduction 

Fuel cells, which electrochemically convert the chemical energy
tored in fuels directly to electricity, are widely regarded as next-
eneration power devices because of their high efficiency and low emis-
ions. Fuel cells are categorized by their electrolyte membrane into poly-
er electrolyte membrane (PEM) fuel cells (PEMFCs), solid oxide fuel

ells (SOFCs), molten carbonate fuel cells (MCFCs), and alkaline fuel
ells (AFCs). 

Table 1 shows the major features and the production status as of
019 of each type of fuel cell. Among them, PEM fuel cells operate under
 low temperature, ranging from –40 to 120 °C, and are currently con-
idered for portable, transportation, and small stationary applications.
hey have also received the most research and development (R&D) ef-
ort, as shown in Table 1 and Fig. 1 (a). 

.1. PEM fuel cell 

PEM fuel cells use polymer electrolyte membranes (notably Nafion R ○)
o conduct protons and separate gaseous reactants on the anode and
athode sides. Fig. 1 (b) depicts a schematic diagram of the PEM fuel
ell structure. Such fuel cells require expensive electrocatalyst (usually
latinum-based materials) to catalyze the electrochemical reactions un-
er a low temperature. Their noteworthy features include low operating
emperature, high power density, and easy scale-up, making PEM fuel
ells most suitable replacements for the internal combustion engines
ICEs) of automobiles. In the transportation sector, various PEM fuel
ell electric vehicles (FCEVs) have been developed, including Honda
larity, Toyota Mirai, and Hyundai Nexo. The U.S. currently has over
000 FCEVs and over 40 hydrogen fueling stations. The distributed PEM
uel cell power system primarily focuses on small-scale power demands
able 1 

ajor types of fuel cells [3-5] . 

PEMFCs AFCs [6] 

Electrolyte Polymeric membrane Potassium hydroxide 

Charge carrier H 

+ OH 

− 

Operating temperature –40–120 °C (150–180 °C in 

high temp PEMFCs) 

50–200 °C 

Electrical efficiency Up to 65–72% Up to 70% 

Primary fuel H 2 , reformed H 2 , methanol in 

direct methanol fuel cells 

H 2 or cracked 

ammonia 

Primary applications Portable, transportation, and 

small-scale stationary 

Portable and 

stationary 

Shipments in 2019 [10] 934.2 MW 0 MW 
50–250 kW for decentralized use and < 10 kW for households). Backup
ower solutions for data centers, banks, hospitals, and telecommunica-
ion companies have received increasing attention recently because of
he stringent regulations on ICE-based backup systems. For portables,
EM fuel cells can provide power to laptops, chargers, wearable electric
nits, and military radio/communication devices. 

.2. Current status and technical barriers 

Two major barriers to the worldwide deployment of PEM fuel cells
re durability and cost. In state-of-the-art fuel cells, durability decreases
s loading of the costly electrocatalyst is reduced, making it challenging
o meet the durability and cost targets of the U.S. department of energy
DOE) at the same time. The current price of Toyota Mirai FCEV is ap-
roximately $60,000 even after incentives, which is higher than that
f gasoline vehicles, and a fuel cell electric bus (FCEB) costs approx-
mately $1 M. From the viewpoint of durability, DOE testing showed
hat the Toyota Mirai passed the 3000 h real-world driving tests but
ailed largely in the DOE accelerated stress test (AST) protocols. The
erformance was significantly reduced after 5000 cycles with the thick-
ess of the cathode catalyst layer (CL) decreasing from ~10 to 3 μm for
.0–1.5 V cycle AST [11] . The lifetime target is ultimately 8000 h for
CEVs, and 25,000 h for FCEBs. From the viewpoint of cost, the cur-
ent status is $50/kW and $45/kW for 100 and 500 thousand per year
roduct volume, respectively. The ultimate DOE target is $30/kW for
CEVs and the 2020 target is $600,000 for each FCEB. In the stationary
ector, Ballard commercializes backup power systems with 7000 h of
perating lifetime, which falls short of the 10,000 h objective [ 12 , 13 ].
oreover, data from various fuel cell developers suggest that equipment

ost is ~6 times higher than the aimed $1000/kW [ 12 , 14 ]. Consider-
ng micro combined heat and power (mCHP) applications, Panasonic’s
PAFCs [7] MCFCs [8] SOFCs [9] 

Phosphoric acid Molten carbonate Ceramics 

H 

+ CO 3 
2 − O 

2 − 

150–220 °C 600–700 °C 500–1000 °C 

Up to 45% Up to 60% Up to 65% 

H 2 or reformed H 2 H 2 , biogas, or methane H 2 , biogas, or 

methane 

Stationary Stationary Stationary 

106.7 MW 10.2 MW 78.1 MW 
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Fig. 2. (a) Relationship of AI, machine learning, and deep learning, and (b) number of US patent applications per year related to AI, machine learning, and deep 

learning in a U.S. DOE report [20] . 
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c  
ighly successful 700 W units feature 90,000 h of lifetime (higher than
he DOE 2020 target of 60,000 h [15] ) and meet the Japanese govern-
ent’s intended price of JPY 800,000 [ 16 , 17 ]. For portables, German

FC Energy’s direct methanol fuel cell (DMFC) products are warrantied
or up to 4500 h, whereas deployments within the sector incur a cost of
p to 15$/W [ 18 , 19 ]. The ultimate DOE durability and cost targets are
000 h and 5$/W, respectively [19] . 

.3. Role of fundamentals, materials, and machine learning 

Although commercial PEMFC systems are now available in various
pplications, a few more years is anticipated prior to their worldwide
eployment to reduce cost and improve durability, and after that, the
echnology will be further advanced like the ICEs in the past hundreds
f years. Advancements in materials, operational control, and design
re crucially important to cost reduction and durability/performance
nhancement. In operation, multiple interrelated and complex phenom-
na occur in fuel cell operation, including mass/heat transport, elec-
rochemical reactions, and ionic/electronic conduction, which govern
nergy conversion and efficiency. Breakthroughs in material develop-
ent, acquisition of fundamental knowledge, and development of ana-

ytical models and experimental tools are highly needed at the current
tage of fuel cell R&D. For example, non-platinum metal group (non-
MG) catalysts, new membrane materials, platinum (Pt) loading reduc-
ion, and high current operation are critical for cost reduction. Advanced
trategies for water/thermal management and system health monitoring
nsure high performance and durability in operation. Machine learn-
ng and artificial intelligence (AI), a powerful tool for data analy-
is/classification, system control/monitoring, and design/performance
ptimization, have received increasing attention in material and energy
evelopment, as shown in Fig. 2 , which plots the numbers of patents
elated to AI, machine learning, and deep learning in the energy field
n the period of 2000–2017. Machine learning, physics-informed deep
earning, and AI can facilitate the development of fundamental knowl-
dge and correlations, material selection and advancement, fuel cell de-
ign and optimization, system control, power management, and moni-
oring of operation health, showing great potential to advance PEMFC
echnology. This review focuses on the discussion of fundamental prin-
iples, material challenges, and machine learning applications in PEM-
Cs. Although the review attempts to cover most literature on this topic,
here are undoubtedly some that may have been left out. 

. PEM fuel cell technology status 

Portable, transportation, and small stationary power generation are
hree primary areas for PEMFC applications. The power of portable
uel cells usually ranges from 5 to 50 W. That of electric passenger
ars, utility vehicles, buses, and heavy-duty trucks ranges from 20 to
50 kW. Stationary PEMFCs are usually targeted for 100 kW to 2 MW
f power for backup or data center power solution. Some small-scale
tationary PEMFCs, e.g. for remote telecommunication and residential
pplications, have a power level of approximately 100 W to 1 kW [21] .

.1. Portables 

Portable power has a small share within the fuel cell market, and the
umber of units shipped has been decreasing in the last decade back to
he levels in 2008, as shown in Fig. 3 . During 2012–2014, shipments
f portable fuel cell systems increased more than three folds because
f the introduction of micro fuel cell chargers for consumer electron-
cs [22] . Nevertheless, such sales have become negligible due to the
ompetitiveness and performance improvement of battery technology,
nd most players have exited the consumer electronics fuel cell market.
n 2019, Swedish myFC announced the discontinuity of the company’s
onsumer products including its JAQ Hybrid power bank [25] . In 2015,
ritish Intelligent Energy stopped developing its UPP fuel cell charger to
ocus on the integration of fuel cells in smartphones and drones [ 24 , 26 ].

Currently, portable PEMFC applications include small-size off-grid
nd backup power, non-automotive auxiliary power units (APUs), and
ilitary applications. The main player in the sector is Germany SFC En-

rgy. In addition to its original DMFC systems up to 500 W, in 2018, the
ompany entered the hydrogen fuel cell market after signing a develop-
ent partnership and licensing agreement with adKor [18] . SFC Energy
rovides off-grid energy systems for the oil and gas industry at remote
ocations, backup or uninterruptible supply for industrial equipment,
PUs for special or recreational vehicles, and portable power supply for
efense and security. Danish SerEnergy capitalizes on high temperature
EMFC technology to deliver compact methanol-powered systems with
 power capacity of up to 5 kW for off-grid and backup power appli-
ations [27] . Using the same concept, German Siqens developed 500 W
nits for off-grid utilization [28] . British BOC, a member of Linde Group,
ommercialized 175 W fuel cell modules together with H 2 cylinders for
ustomers requiring long off-grid operation [ 10 , 29 ]. 

Portable PEMFCs have also been developed as a promising power
ource for military applications. They showed promise in increasing the
ight time of unmanned aerial vehicles (UAV) to approximately 8 h
nd reduced the refueling time to a few minutes. Less maintenance and
ero lubricants are required because of the absence of moving parts in
uel cells. They can be used as wearable power supply devices and can
eplace batteries to reduce the carry-on weight for soldiers. Several R&D
fforts were recently summarized by Wang et al. [11] . 

.2. Transportation 

The transportation sector is the primary application of PEMFCs be-
ause of their zero emission, high efficiency (as high as 65% in practice),
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Fig. 3. Fuel cell shipment and power generation in the 

portable power sector [ 10 , 22-24 ]. 

Table 2 

Numbers of FCEVs sold by 2019 and roadmaps of 2020–2040 in USA, South Korea, Japan, Europe, and China. 

FCEV milestones 

FCEV sold by Dec 2019 [30] 2020s 2030 2040 

USA [31] 8089 200 K by 2025 ∗ 5.3M 

∗ –

South Korea [32-34] 5068 67 K by 2022 ~850K 2.9M 

Japan [35] 3611 200 K by 2025 ~800K –

Europe [36] 2485 800 K by 2025 ∗ 4.2M 

∗ 21.3M 

∗ 

China [ 37 , 38 ] 112 50 K by 2025 1M –

∗ Ambitious scenarios by private sector representatives. 
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nd high power density. Major motor companies have been extensively
nvolved in FCEV development to overcome the major barriers to com-
ercialization, including cost, durability, and cold-start capability. 

More than 19,000 FCEVs were sold worldwide by the end of 2019
30] . Approximately, 7500 units were delivered in 2019 alone (90%
ncrease with respect to the previous year), and more than half of them
ere delivered in South Korea [ 39 , 40 ]. In addition, 86% of the all-time

ales were concentrated in California, South Korea, and Japan because of
he strong policy support in these regions [ 32 , 35 , 41-43 ]. As of 2019, the
.S. currently has over 8000 FCEVs and 44 hydrogen refueling stations.

n Europe, ~2500 FCEVs have been deployed. In Asia, there were over
000 FCEVs in Japan and South Korea by 2019, and they are expected
o be over 200 K and 1.6 M by 2025 and 2040, respectively, according to
he 2020–2040 roadmaps. Although China has only about 112 currently,
ts ambitious plan reveals that 50 K and 1 M FCEVs will be deployed by
025 and 2030, respectively. Table 2 summarizes the numbers of FCEVs
n these major counties, along with future milestones in their hydrogen
oadmaps. Significantly, the South Korean [32] , Japanese [ 35 , 44 ], and
hinese [37] hydrogen roadmaps were released by the government or
overnmental agencies, while in the U.S. [31] and Europe [36] , they
ere created by private sectors. Leveraging on the current momentum

n the fuel cell and hydrogen industry, policy support is necessary to
nable operational scale-up and accelerate the wide deployment of the
echnology [ 45 , 46 ]. 

As of 2020, Hyundai, Toyota, and Honda have launched high-volume
CEVs. Table 3 summarizes their fuel cell stack and hydrogen tank con-
gurations, driving range, and MPGe. In 2019, ~63% of the total sales
ame from Hyundai Nexo, 32% from Toyota Mirai, and less than 5%
rom Honda Clarity Fuel Cell [39] . Launched in 2018, Hyundai Nexo
eatures a more efficient stack, lighter and more compact powertrain,
nd 40% more range up to the world’s highest 380 miles (EPA [47] )
han its predecessor Tucson FCEV [48] . According to Hyundai’s ‘FCEV
ision 2030 ′ , the aim is to produce 700,000 fuel cell systems annually
y 2030, including 500,000 for FCEVs [49] . Cumulatively, Toyota Mirai
s the most sold FCEV with over 10,000 units sold since its introduction
n 2014. The adoption of a 3D fine-mesh porous media flow field and
hinner membrane (~10 μm thick) significantly improved the reactant
nd water management with respect to the company’s previous 2008
odel, leading to higher efficiency and enabling the removal of exter-
al humidification [ 50 , 51 ]. The first generation FCEV Mirai is equipped
ith a 114-kW (153-HP) PEMFC stack with a 3.1-kW/L power density.

n the 2019 Tokyo Motor Show, Toyota unveiled its second generation
irai concept, scheduled for launch in 2020, with a 30% increase of

he current 312-mile (EPA [47] ) range [52] . From 2020, the automaker
xpects to ramp up sales and production capacity ten-fold up to 30,000
er year [53] . Despite its availability on lease since late 2016, the de-
iveries of Honda Clarity Fuel Cell are far behind those of Hyundai and
oyota [ 39 , 54 ]. Besides, since 2013, Honda and General Motors have
een co-developing their next-generation PEMFC systems and hydrogen
torage technologies [55] . In 2017, both companies established the auto
ndustry’s first manufacturing joint venture to mass-produce advanced
EMFC systems starting around 2020 [56] . 

FCEBs are one of the best early transportation applications for
EMFC technology. In general, transit buses run at a lower speed and
re subject to less dynamic operation than FCEVs. They operate in con-
ested areas, such as big cities where pollution concerns are more ur-
ent and are centrally located and fueled. Furthermore, buses also per-
it larger space and better mechanical protection for hydrogen tanks.

n the U.S., more than 30 FVEBs are operated in the state of Califor-
ia, serving approximately 17 million passengers by 2017 [64] . Most of
hem have achieved or almost met the ultimate target of 25,000 h. The
apital cost in 2016 was ~$1.8 million per bus, and analysis showed a
ost of ~$1 million each on an order for 40 buses [65] . Europe has been
articularly active in the development, demonstration, and deployment
f FCEBs, leveraging on strong EU support through a series of public-
rivate projects. By the end of 2019, approximately 100 FCEB demon-
trations were completed across the continent [66] . Significant mile-
tones include the achievement of 35,000 h by a Ballard fuel cell stack
ntegrated on a Wrightbus in London [ 10 , 67 ], and the ‘Bus of the Year
019 ′ award by Van Hool’s FCEB Exqui.City18 [ 68 , 69 ]. Currently, a to-
al of 12 European bus OEMs are pursuing fuel cell activities, and ~1300
CEB deployments are planned within the next few years [ 30 , 66 ]. The
argest-scale deployment projects are the Joint Initiatives for hydrogen
ehicles across Europe (JIVE and JIVE 2) and the H2Bus Europe. The
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Table 3 

PEM fuel cell electric vehicles (FCEVs) [ 11 , 57-62 ]. 

Vehicle Model Stack Max Power Fuel Economy MPGe 

(City/Highway/Comb) 

Stack Power 

Density 

Fuel Pressure 

(MPa) 

Fuel Tank Capacity 

(kg) (wt%) 

Range (EPA [47] ) 

Hyundai Nexo [63] 95 kW 65/58/61 3.1 kW/L 70 6.33 (7.18 wt%) 380 miles 

Honda FCX Clarity Fuel Cell 103 kW 69/67/68 3.12 kW/L 70 5.46 (6.23 wt%) 366 miles 

Toyota FCEV Mirai 114 kW 67/67/67 3.10 kW/L 70 5.0 (5.70 wt%) 312 miles (122.4 L 

H 2 /70 MPa) 

Hyundai Tucson Fuel Cell 100 kW 49/51/50 1.65 kW/L 70 5.64 (6.43 wt%) 265 miles 

Daimler GLC F-CELL Hybrid SUV 

Plug-in 

~155 kW for car 

total power output 

Combined 

hydrogen 

consumption: 

0.34 kg/100 km 

– – – ~430 km (4.4 kg 

H 2 @700 bar) + 51 km 

(Battery) 

Saic MAXUS FCV80 115 kW – 3.10 kW/L 35 6 312 miles 

Table 4 

PEM fuel cell electric buses (FCEBs) in Europe and the U.S. 

ID Fuel Cell System Max Stack 

Power (kW) 

Battery 

Capacity 

(kWh) 

H 2 Storage 

Capacity (kg) 

Range (mile) OEM 

ACT ZEBA UTC Power 120 

EnerDel/17.4 

40 204 Van Hool [65] 

SL AFCB Ballard 150 A123/11 50 260 ElDorado National [65] 

UC Irvine AFCB Ballard 150 A123/11 50 244 ElDorado National [65] 

A330 Fuel Cell Ballard 

FCveloCity-HD85 

85 24 or 36 38 220–250 Van Hool (Belgium) [71-74] 

Businova Symbio H2Motiv 30 132 28 190 Safra (France) [ 75 , 76 ] 

Streetdeck FCEV 

(double-decker) 

Ballard 

FCveloCity-HD85 

85 48 30 200–265 with 

increasing H 2 storage 

Wrightbus (UK) [77-80] 

H2.City Gold Toyota 60 29–44 37.5 250 CaetanoBus (Portugal) [ 81 , 82 ] 

Urbino 12 hydrogen Ballard FCmove-HD 70 30 37.5 220 Solari (Poland) [83-85] 
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ormer aims to deliver almost 300 FCEBs in 22 cities of 10 countries by
he early 2020s, with a maximum price of €650k each [66] . The latter
ntends to scale-up production and deploy 1000 FCEBs at commercially
ompetitive prices, including 600 units in Denmark, Latvia and the UK
y 2023 [70] . Table 4 summarizes FCEBs and their configurations in
urope and US. 

PEMFCs have also been developed for airplane, airship, railway (and
ight railway), and marine applications. The technology has advantages
f high energy and power density, which is ideal as airplane power for
he main power plant of the UAV or APU for large aircrafts. Some devel-
pments were also reported or are ongoing to install PEMFCs in boats
nd ships to reduce the emissions of CO 2 and pollutants and the usage
f fossil fuels [11] . 

.3. Stationaries 

The stationary application generally considers PEM fuel cells as pri-
ary power, backup power, and combined heat and power (CHP). In
019, the worldwide market for stationary fuel cells was ~2.98 billion
SD, and it is still rapidly growing [86] . The notable manufacturers in-
lude Plug Power, Fuel Cell Energy, UTC Power, and Fuji Electric [87] .
s reported by the U.S. DOE, more than 235 MW stationary fuel cell
ower supply has been installed with about 8000 backup power units
eployed or on order in the U.S. [88] . 

For primary power, stationary PEMFCs can not only serve as a sup-
lementary of the grid, but can also act as distributed power sources
hen the grid is unavailable. The efficiency of conventional ICE-based
ower plants is ~30–40%, whereas that of a PEMFC power plant is up to
5% [ 11 , 88 ]. Additionally, the electricity demand considerably varies
rom on- to off-peak hours in cities. PEM fuel cells usually have excellent
ynamic response and flexibility in output power adjustment. Thus, us-
ng PEM fuel cells as a supplementary solution for on-peak hours signif-
cantly improves the efficiency and dynamic characteristics. Moreover,
he grid construction cost is high in the vast territory with a sparse popu-
ation. A considerable amount of generated wind power and hydropower
s not fully utilized because of the lack of large-scale energy storage in-
rastructure. A PEMFC power plant can be co-located with electrolyzers
o efficiently utilize renewable resources for power supply. In Califor-
ia, more than 400 stationary fuel cell systems have been installed since
001, supported by the Public Utilities Commission’s Self-Generation In-
entive Program, with 135 MW of electric-only and more than 40 MW
f CHP fuel cell systems. The total installed capacity is expected to be
75 MW [89] . Furthermore, PEM fuel cells have also been developed as
mergency backup solutions for core infrastructures that require unin-
errupted power, such as factories, hospitals, signal towers, and banks.
he DOE target for a PEMFC backup power of 1–10 kW is 15 years and
0,000 h with a mean time between failures of less than 5 years by
020 [12] . PEM fuel cells provided emergency backup power to signal
owers operating for hundreds of hours in both Bahamas and Northeast
nited States after Hurricane Sandy [88] . Additionally, PEM fuel cells
re suitable to provide both power and thermal energy to residences
r offices, which usually require a power level of 200–1000 W [17] .
he overall efficiency of a fuel cell CHP system could be up to 80–95%
88] . In Japan, Panasonic and Toshiba Fuel Cell Power Systems (Toshiba
CP) began the sales of commercial products of ENEFARM fuel cell CHP
nits from 2009 [17] . Nearly 265,000 ENEFARM units were installed as
f 2018 with a power capability of up to 5 kW. Japan plans to deploy
.3 million of these units by 2030 [90] . 

.4. Hydrogen refueling stations 

Since December 2019, the U.S. has 44 hydrogen refueling (HRF) sta-
ions, almost all of which are located in the state of California. In Europe,
here were 139 HRF stations in 2019, and ~1500 stations will be avail-
ble by 2025 according to their roadmap. In Asia, the governments of
hina, Japan, and South Korea are supportive of PEMFC technology and
RF infrastructure development. Japan already had 112 HRF stations

n 2019 and plans to open 320 and 900 hydrogen retailers by the end of
025 and 2030, respectively. Although China and South Korea have a
elatively small number of HRF stations at present, their ambitious plans
how that more than 1000 stations will be developed by 2030. Table 5



Y. Wang, B. Seo and B. Wang et al. Energy and AI 1 (2020) 100014 

Table 5 

Status and plan of hydrogen refueling (HRF) stations of USA, South Korea, Japan, Europe, and China. 

HRF stations installed by Dec 2019 [30] HRF milestones 

2020s 2030 2040 

USA [31] 44 ~580 by 2025 ∗ 5600 ∗ –

South Korea [32-34] 34 310 by 2022 1200 1200 

Japan [35] 112 320 by 2024 900 –

Europe [36] 139 ~1500 by 2025 ∗ ~3700 ∗ ~15,000 ∗ 

China [ 37 , 38 ] 12 300 by 2025 1000 –

∗ Ambitious scenarios by private sector representatives. 
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he HRF roadmap for these counties. 

. Fundamentals and materials 

For the hydrogen oxidation reaction (HOR) and oxygen reduction
eaction (ORR) to proceed efficiently, the materials used in fuel cells
ust be chosen so that a high beginning of life performance and dura-

ility are ensured. For example, to improve the activation and reduce
ransport losses, various issues as discussed earlier need to be addressed,
ncluding durable electrocatalyst and its loading reduction [2] , reac-
ant/membrane contamination [ 91 , 92 ], water management [ 93 , 94 ],
nd degradation [ 95 , 96 ]. Material advance and improvement are there-
ore important for fuel cell R&D, and fundamentals that establish the
aterial properties and fuel cell performance under various operation

onditions are highly needed. 

.1. Materials 

.1.1. Membrane 

The PEM is located between the anode and cathode CLs. Its main
unctions are two-fold: (i) it acts as a separator between the anode and
he cathode reactant gasses and electrons, and (ii) it conducts protons
rom the anode to cathode CLs. Therefore, as a separator it must be im-
ermeable to gasses (i.e., it should not allow the crossover of hydrogen
nd oxygen) and must be electrically insulating. In addition, the mem-
rane material must withstand the harsh operating conditions of PEM
uel cells, and thus possess high chemical and mechanical stability [97] .

Perfluorosulfonic acid (PFSA) is typically used as a PEM material
or PEM fuel cells. The main chain is Teflon-like and highly hydropho-
ic. The sulfonic acid group as an end group of the side chain is highly
ydrophilic; thus, it allows the adsorption of water for proton conduc-
ion. The membrane hydration is thus of importance and must have an
ptimal value to ensure that sufficient water is present for proton con-
uction without the risk of flooding the CLs and gas diffusion layers
GDLs). The length of the side chain is also an important factor in de-
ermining the stability and performance of the membrane. For PEMFC
pplications, the two types of PFSA membranes usually used are clas-
ified as long side chain (LSC), such as Nafion R ○, and short side chain
SSC), e.g. Aquiviun R ○, membranes. Their main difference is the number
f CF 2 units and the structure of the side chain [98] ( Fig. 4 (a)). The
hysical structure of a Nafion XL membrane (LSC) is shown in Fig. 4 (b).

Though PFSA is the state-of-the-art material used in PEM fuel cells,
here are main drawbacks to this type of membrane that can hinder
urability enhancement and cost reduction, summarized as follows: 

1. High proton conductivity occurs under its full hydration state and
thus it is essential to humidify the reactant gasses, which raises cost
and complication of a PEMFC system. 

2. Its structure is susceptible to attack by metallic cations and conse-
quent decomposition of the polymer chain. This will reduce its me-
chanical integrity and proton conductivity. 

3. Cyclic changes in its hydration during PEMFC operation can result in
membrane failure due to the associated structural swell/shrinking.
This can be mitigated by using reinforcement and appropriate fillers
to improve polymer structure, which increases cost. 

In addition, it was reported that the polymer backbone (–CF2–) may
eact with hydrogen through:–CF2– + 2H 2 → –CH 2 – + 2HF, causing
embrane degradation [95] . Consequently, for the past years, polymer

esearch in PEM fuel cells has focused on finding alternative membrane
aterials that are not only cost-competitive but also exhibit high dura-

ility and stability over a wide range of operating conditions, partic-
larly under the extreme conditions of low humidity (e.g. 0%RH) and
igh (e.g. > 120 °C) and sub-zero temperatures, which have been exten-
ively reviewed in the literature [ 100 , 101 ]. Some alternative solid poly-
er electrolyte materials offer the advantage of low cost while eliminat-

ng the need for humidification. However, their conductivity and stabil-
ty during the fuel cell lifetime suffer. A summary of major alternative
embrane materials is presented in Table 6 . Machine learning and AI

an play an important role in membrane material development. Durable,
ost-effective membranes with high ionic conductivity and minimal hy-
ration requirement are highly desirable for PEM fuel cells. In addition,
roton-conducting polymer membranes are extensively studied in other
elds, such as water electrolysis, chlor-alkali production, metal-ion re-
overy, flow battery, and gas drying/humidification. Machine learning
ill be very valuable to analyze the large set of material data available

n the literature, such as ionic conductivity, material structure, function
roups, hybrid configuration, and subfreezing performance, for material
election and optimization. In fuel cell operation, ion transport, species
ross-over, water diffusion/permeation, and material degradation occur
n the membrane, which can be incorporated into machine learning and
I through their fundamental mechanisms and equations for control op-

imization, degradation mitigation, and real-time diagnostics. 

.1.2. Catalyst layers 

Catalyst layers (CLs) are the component where the electrochemical
eactions occur. The CL material must provide continuous pathways for
arious reactant species; primarily, (i) a path for proton transport, (ii)
 pore network for gaseous reactant supply and water removal, and
iii) a passage for electron conduction between the CL and the current
ollector. The CL material is a major factor affecting fuel cell perfor-
ance and durability. Conventional CLs are composed of electrocat-

lyst, carbon support, ionomer, and void space. Optimization of the
L ink preparation has been the main driver in PEMFC development
 21 , 102 ]. This breakthrough highlights the importance of the so-called
riple-phase boundaries of the ionomer, Pt/C, and void space so that all
eactants could access for the reactions. Conventional CLs are prepared
ased on the dispersion of a catalyst ink comprising a Pt/C catalyst,
onomer, and solvent. Ink composition is important for aggregation of
he ionomer and agglomeration of carbon particles, and the dispersion
edium governs the ink’s properties, such as the aggregation dimension

f the catalyst/ionomer particles, viscosity, and rate of solidification,
nd ultimately, the electrochemical and transport properties of the CLs
103-105] . The ionomer not only acts as a binder for the Pt/C particles
ut also proton conductor. Imbalance in the ionomer loading increases
he transport or ohmic loss, with a small amount of ionomer reducing
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Fig. 4. (a) Polymer structures of Hyflon Ion/Dow and Nafion [98] , (b) SEM images of Nafion XL membrane in the as-received form (AsR) after being pretreated in 

water. Rows from top to bottom show low ( × 3000), medium ( × 9000), and high ( × 43,000) magnification [99] . 
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he proton conductivity and a large amount increasing the transport re-
istance of gaseous reactants. 

In contrast, non-conventional CLs are structured such that one of
he major ingredients in their conventional counterparts is eliminated
 2 , 102 ]. Nanostructured thin film (NSTF) CLs from 3 M are the most suc-
essful non-conventional CL. They consist of whiskers where the cata-
yst is deposited without ionomer for proton conduction. Over the years,
hey have proven to provide a higher activity than conventional CLs, as
een in Fig. 5 . In addition, similar to conventional CLs, annealing can
e used to change the CL structure and ultimately change its activity. 
Carbon is the most commonly used support material for catalyst be-
ause of its low cost, chemical stability, high surface area, and affin-
ty for metallic nanoparticles. The surface area of the support varies
epending on its graphitization process and is reported to range from
0 to 2000 m 

2 /g [107] . Ketjen Black and Vulcan XC-72 are popular
arbons with a surface area of 890 m 

2 /g and 228 m 

2 /g, respectively
108] . Carbon tends to aggregate, forming carbon particle agglomer-
tes with a bimodal pore size distribution (PSD). This PSD is usually
omposed of the primary pores of typically 2–20 nm in size and sec-
ndary pores larger than 20 nm. The primary pores are located between
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Table 6 

Summary of alternative membrane materials to PFSA [100] . 



Y. Wang, B. Seo and B. Wang et al. Energy and AI 1 (2020) 100014 

Fig. 5. Schematic illustration and corresponding HRTEM 

images of the mesoscale ordering during annealing and for- 

mation of the mesostructured thin film starting from the 

as-deposited Pt–Ni on whiskers (A), annealed at 300 °C (B) 

and 400 °C (C). Specific activities of Pt–Ni NSTF as com- 

pared to those of polycrystalline Pt and Pt-NSTF at 0.9 V 

(D) [106] . 

Fig. 6. (A) Steady-state ORR polarization plots (bottom) and H 2 O 2 yield plots (top) measured with different PANI-derived catalysts and reference materials: 1, 

as-received carbon black (Ketjenblack EC-300 J); 2, heat-treated carbon black; 3, heat-treated PANI-C; 4, PANI-Co-C; 5, PANI-FeCo-C(1); 6: PANI-FeCo-C(2); 7, PANI- 

Fe-C; and 8, E-TEK Pt/C (20 μgPt/cm 

2 ). Electrolyte: O 2 -saturated 0.5 M H 2 SO 4 [0.1 M HClO 4 in an experiment involving Pt catalysts (dashed lines)]; temperature, 

25 °C. RRDE experiments were performed at a constant ring potential of 1.2 V versus RHE. RDE/RRDE rotating speed, 900 rpm; non–precious metal catalyst loading, 

0.6 mg/cm 

2 . (B) Steady-state ORR polarization plots (bottom) and H 2 O 2 yield plots (top) measured with a PANI-Fe-C catalyst in 0.5 M H 2 SO 4 electrolyte as a function 

of the heat treatment temperature: 1, 400 °C; 2, 600 °C; 3, 850 °C; 4, 900 °C; 5, 950 °C; and 6, 1000 °C [111] . 
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arbon particles in an agglomerate, while the secondary pores are be-
ween agglomerates. Depending on the Pt distribution and utilization
ithin an agglomerate, the primary pores play a key role in determin-

ng the electrochemical kinetics, while the secondary pores are impor-
ant for reactant transport across a CL. The portion of the primary and
econdary pores is largely determined by the surface area of the car-
on support [108] . Hence, it has been reported that carbon supports
lso determine the optimal ionomer content and the Pt distribution in
Ls [ 109 , 110 ]. Additionally, the anode overpotential is usually consid-
red negligible in comparison with its cathode counterpart because of
he sluggish ORR. Thus, most work in the literature is focused on cath-
de CLs. CL optimization is focused on not only enhanced durability
ut also reduction of the Pt loading. For this purpose, it is crucial to
etermine the optimal combination of the carbon support and catalyst
or loading reduction. An example is highlighted in Fig. 6 , where differ-
nt carbons are heat-treated to induce the catalytic activities of PANI-
erived catalysts and to ensure their performance and stability. Rotating
ing-Disk Electrode (RDE) measurements were conducted to study the
RR activity of various heat-treated PANI-C catalysts as a function of

emperature. 
The durability and stability of CL material are a major subject in

&D, which is related to multiple factors, mainly including (i) operat-
ng and environmental conditions, (ii) oxidant and fuel impurities, and
iii) contaminants and corrosion in cell components. For instance, oper-
tion under high voltages (above 1.35 V), which may occur during fuel
ell startup and shut-down, can lead to Pt dissolution [112] . Operation
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urther above this voltage will cause degradation of the carbon support,
nown as carbon corrosion. In addition, any traces of a contaminant in
he fuel or oxidant feeds can lead to a decrease in fuel cell performance
y poisoning CL materials [ 113 , 114 ]. Some contaminants cover the Pt
atalyst and then reduce the electrochemical surface area (ECSA) avail-
ble for the reaction. This catalytic contamination is usually reversible
pon removal of the contaminants. In certain instances, contaminants
uch as ammonia will cause irreversible degradation under adequate ex-
osure time and concentration [44] . Further, cell components, such as
Ls and BPs, may contain contaminants, from their manufacturing pro-
ess and/or material used, which eventually leach out and cause poi-
oning of the MEA. This may include membrane poisoning by metallic
ations [91] . 

Up to date, Pt is the electrocatalyst of choice for the ORR in PEM fuel
ells because of its high activity. However, Pt has a high cost associated
ith it and is currently mined in mainly several countries, such as South
frica and Russia. Furthermore, high Pt loading is required to reach

he target lifetime without major efficiency loss. Using state-of-the-art
ethods, Pt catalyst is distributed in a way that does not allow its full
tilization in CLs [ 115 , 116 ]. Alternative catalysts that are either Pt free
r Pt alloys are under research. Two excellent review papers on the topic
re provided by Ref. [ 117 , 118 ]. A summary of some of these catalysts,
heir current status, and remaining challenges is provided in Fig. 7 . 

Machine learning and AI are extremely helpful and highly demand-
ng for CL development providing that CLs have been extensively stud-
ed for not only PEM fuel cells, but also many other systems, such as
lectrolyzers and sensors with Pt-catalyst electrodes. The species trans-
ort equations, ORR reaction kinetics, two-phase flow, and degrada-
ion mechanisms can be encoded into the neural networks for effec-
ive physics-informed deep learning to understand the impacts of cata-
yst materials on fuel cell performance/durability and optimize the pore
ize, PSD, PTFE loading, ionomer content, and carbon and electrocata-
yst loading. In the mass production phase, machine learning and AI can
ssist the quality control of CL composition in signal processing and el-
ment analysis when integrated with detection techniques such as Laser
nduced Breakdown Spectroscopy (LIBS) [119] . 

.1.3. Microporous and gas diffusion layers 

Gas diffusion layers (GDL) and microporous layer (MPL), together
alled diffusion media (DM), are placed between a bipolar plate (BP) and
he CL. Their main function is to provide mechanical support for MEAs,
 passage for reactant supply and product removal, and a pathway for
lectron conduction between CLs and BPs. Both GDL and MPL are porous
aterials, with carbon paper being the option for commercial GDLs and

arbon powder for MPLs. 
Carbon paper is a carbon-fiber composite with fibers of ~7 μm in

iameter. The fibers are held together by binder, which usually accounts
or 5–15% of the final paper weight [120] . Carbon paper GDLs must be
ydrophobic to improve water removal and avoid electrode flooding.
olytetrafluoroethylene (PTFE; brand name Teflon) is often added to
arbon paper for hydrophobicity treatment. Additionally, carbon paper
DLs are anisotropic in their structure, as shown in Fig. 8 . 

As depicted in Fig. 8 (c) and (d), at low loading, PTFE is usually con-
entrated at the surface region and penetrates deeper into the GDL as
ts loading increases. Another observation is that the binder structure of
TFE is changed in that it is no longer smooth but exhibits a web-like
orous shape. A high PTFE loading will block the GDL pores, result-
ng in mass transport limitation. The PTFE loading also affects the PSD
121] , and reduces overall pore volume. For a pore radius ≤ 3 μm, no
SD change was observed, implying that PTFE does not penetrate the
ores in this size range. Pores larger than 5 μm were found to be the
ost affected with a significant decrease in volume as the PTFE load-

ng increases from 5% to 20%. Hence, it is crucial to balance the GDL
ydrophobicity and pore space for liquid removal and gaseous reactant
upply, respectively. 
To improve the GDL-CL physical contact, a MPL is often introduced
etween the two layers. It usually has a pore size between those of
DLs and CLs and has been reported to enhance fuel cell performance

n some occasions because of the improved water management in the
athode [122] . Its pores are primarily less than 0.5 μm with a mean
ize of 0.320 μm [123] , while those in GDLs and CLs are mostly around
–20 μm [121] and less than 0.02 μm [124] , respectively. MPLs are
omposed of tightly packed carbon black particles (see Fig. 9 ), bound
ogether by PTFE, which also makes MPLs hydrophobic. The MPL ink
s usually coated onto the GDL surface during fabrication. Their main
urpose is to provide a smooth, continuous interface between a GDL and
 CL, thereby reducing the interfacial resistance. Other MPL benefits in-
lude (i) reduced overall ohmic loss mainly due to membrane hydration
ncrease; (ii) electrode flooding mitigation; and (iii) enhancement of the
EA chemical and mechanical stability [125-134] . 

Machine learning and AI can be applied to optimize the design of
oth GDLs and MPLs, including their pore sizes, PSD, PTFE loading,
ermeability, and physical dimensions. The species transport equation,
eat transfer and electric current conductance equations, Darcy’s law,
nd two-phase flow model need to be encoded into the neural networks
or effective physics-informed machine learning. 

.1.4. Bipolar plate and gas flow channel 

BPs have multiple roles, including electric current collection, heat
emoval, gaseous reactant distribution, and water removal via their em-
edded gas flow channel (GFC) networks, and mechanical support. In
ddition to these functions, BP materials need to be corrosion resistant in
he fuel cell environment. In the early stages of fuel cell development,
raphite is a popular BP material because of its high corrosion resis-
ance and electrical conductivity. However, graphite is brittle, making
ts mass production difficult, and may subject to leakage owing to its gas
ermeability. In commercial PEM fuel cells, carbon composites and met-
ls with proper protective coating, including aluminum, stainless steel,
r titanium, have been explored as potential BP materials. 

Carbon composites consist of a polymer binder and conductive car-
on fillers with the former providing mechanical strength and gas im-
ermeability and the latter offering electron and heat conductive path-
ays. Increasing the filler loading or combining multiple types of fillers,

uch as carbon black, carbon fibers, graphite particles, and carbon nan-
tubes, may enhance the composite conductivity through improving car-
on cluster connection. However, overloading fillers will reduce BP me-
hanical strength, causing cracks or material failure. The geometry or
orphology and loading of carbon fillers are key factors determining the

omposite BP’s properties. Metal BPs are advantageous in multiple as-
ects, such as easy machining, high electric and thermal conductivities,
ow gas permeability, and mechanical robustness. A major challenge is
orrosion resistance in the acidic environment of fuel cells. To prevent
orrosion, proper coating needs to be applied to protect the metal sub-
trates. For aluminum, metallic nitrides, carbon, and composite coat-
ngs are popular coating materials. For stainless steels, a graphene-Ni
ayer, nitrides, and chromium carbide have been investigated as poten-
ial coating materials. Although pure titanium has a higher corrosion
esistance to stainless steel, pure titanium may be subject to the for-
ation of an oxide layer on its surface in fuel cell environment [135] .
ao et al. [135] proposed a carbon/PTFE/TiN composite coating using a

wo-step hydrothermal and impregnation process and found that it sig-
ificantly improves the corrosion resistance and surface hydrophobicity.
oyota Mirai adopted a carbon-coated Ti plate as its cathode and anode
Ps. In coatings, surface defects may occur, leading to pinhole formation
nd pathways for corrosives to reach the metal substrate. Multi-layered
oatings offer an engineering solution to resolve this issue. Furthermore,
hysical vapor deposition (PVD) techniques may cause surface defects,
uch as craters and droplets. Surface defect mitigation is an important
ssue in metal BP development [11] . de Oliveira et al. [136] proposed
 trade-off strategy to screen BP materials based on evaluation of the
orresponding Ashby charts. They examined graphite-polymer compos-
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Fig. 7. (a) Development timelines for Pt, Pt alloy/dealloy, core-shell, nonprecious metal, shape-controlled and nanoframe ORR electrocatalysts, (b) benefits and 

remaining challenges for each of the primary categories of electrocatalysts [117] . 
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Fig. 8. SEM images of (a) TORAY-TPGH-120 with 0% PTFE and (b) TORAY TPGH-120 with 50% PTFE; (c) cross-section image of TORAY-TPGH-120 with 20% 

PTFE; and (d) cross-sectional image of TORAY-TPGH-120 with 50% PTFE —the in-plane direction is defined as the plane perpendicular to the carbon fibers (a and b 

showing the xy plane, c and d showing the xz plane —the in-plane direction is perpendicular to the xz plane) [121] . 

Fig. 9. SEM top-view images of a commercial MPL (Freudenberg) [133] . 
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tes and metals using literature data and recommended multiwall car-
on nanotubes (MWNT) and carbon fibers as minor fillers in addition to
raphite. They also indicated that pack chromization, nitridation, and
ulti-layered PVD films yield the best performance for metallic BPs.

imilar approaches can be developed using machine learning and AI to
creen BPs and coating materials based on the abundant data available
n the literature. 

GFCs are embedded in BPs to distribute gaseous reactants and re-
ove byproduct water. A desirable GFC design evenly distributes reac-

ants and effectively removes water product with a minimal demand for
umping power. Several GFC designs have been widely investigated, in-
luding parallel, serpentine, pin-type, interdigitated, and porous media
ow fields. Additionally, cross-sectional geometry, GDL intrusion, and
urface properties are important factors affecting GFC performance. At
he GDL surface, droplets may emerge and block reactant flow in the
 p
FC and diffusion to the CL. Thus, proper droplet removal strategy is
eeded, which can be developed through analyzing the force balance
nd its relevance to the gas velocity, surface roughness and wettabil-
ty, and droplet size [ 137 , 138 ]. Moreover, two-phase flow in GFCs is
rucial to reactant distribution and water removal. To ensure the GDL
urface is free of liquid flow, other channel surfaces should be more hy-
rophilic. Furthermore, bypass flow between two neighboring channels
ay occur, driven by their pressure difference, causing reactant leakage

nd local reactant starvation. This bypass flow is determined by the GDL
ermeability, land dimension, and assembly pressure on BPs. A novel de-
ign of porous medium GFCs was proposed by Wang [139-142] , in which
FCs provide additional functions of heat removal and electron con-
uctance via their solid matrix. This concept enables a flexible GFC de-
ign, including the cross-sectional dimensions, material structure (e.g.,
andom and regular structures), novel fabrication (e.g., metal foam or
late manufacturing), and material selection (e.g., solid matrix and coat-
ng materials). Toyota Mirai FCEVs adopted carbon-coated Ti porous
edium GFCs on the cathode. Other porous media have also been inves-

igated as potential GFC materials, including carbon/graphite/graphene
oams, metal (aluminum, nickel, and stainless steel) foams, and metal
orous plates, as presented in Table 7 . Metal materials usually need a
roper protective coating to survive fuel cell conditions, such as tita-
ium and aluminum. Machine learning and AI are extremely helpful
n the optimization of GFC design, including flow-field arrangement,
ross-sectional shapes, counter/co-flow configuration, and material and
ore networks of porous media GFCs. The flow equations, Darcy’s law,
pecies transport equation, and heat transfer and electric current flow
quations, need to be encoded into the neural networks for effective
hysics-informed deep learning. 
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Table 7 

Porous media flow field materials for PEM fuel cell [143] . 
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The technical targets set by the DOE for various fuel cell components
re summarized in Table 8 . 

.2. Two-phase flow 

Two-phase flow, originated from water production by the ORR, is an
mportant phenomenon in PEMFCs, where the two phases refer to the
eactant gasses and liquid water. Excessive liquid water will hinder reac-
ant delivery to the reaction sites, thereby increasing the concentration
olarization. This “flooding ” issue leads to multiple concerns, including
aterial degradation, performance reduction, operation stability, and

ocal reactant starvation that causes material degradation. 
In porous components such as CLs, MPLs, and GDLs, liquid water
ow is mainly driven by the capillary pressure (Pc) defined as the pres-
ure difference between the liquid and gas phases. A common Pc cor-
elation is the Leverett J-function, which expresses it as a function of
iquid saturation (s) and material properties, such as porosity ( 𝜃c ), con-
act angle ( 𝜃c ), surface tension ( 𝜎), and permeability (K) [ 145 , 146 ]: 

 𝑔 − 𝑃 𝑙 = 𝑃 𝑐 = 𝜎 cos ( 𝜃𝑐 ) 
(
𝜀 

𝐾 

)1∕2 
𝐽 ( 𝑠 ) , (1)

here 𝜎 is the surface tension and the Leverett J -function J ( s ) is ex-
ressed for hydrophobic and hydrophilic media as follows: 

 ( 𝑠 ) = 

{ 

1 . 417 ( 1 − 𝑠 ) − 2 . 120 (1 − 𝑠 ) 2 + 1 . 263 (1 − 𝑠 ) 3 for 𝜃𝑐 < 90 𝑜 

1 . 417 𝑠 − 2 . 120 𝑠 2 + 1 . 263 𝑠 3 for 𝜃𝑐 > 90 𝑜 
(2) 
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Table 8 

2025 DOE technical targets of PEM fuel cells [144] . ∗ Some statuses are based on specific material performance. 

Characteristic Units Status ∗ 2025 Target 

MEA and Catalysts 

Pt group meta (PGM) total content g kW 

− 1 rated 0.125:1.05 (150, 250 kPa) ≤ 0.10 

Durability with cycling Hours 4100 8000 

Performance @ 0.8 V mW cm 

− 2 306 300 

Performance @ rated power guideline mW cm 

− 2 890; 1190 (150,250 kPa) 1800 

Loss in catalytic (mass) activity % 40 ≤ 40% loss of initial 

Loss in performance @ 0.8 A cm 

− 2 mV 20 ≤ 30 

Electrocatalyst support stability % mass activity loss Not tested ≤ 40 

Loss in performance @ 1.5 A cm 

− 2 mV > 500 ≤ 30 

Mass activity A mg pgm @ 900 mV IR-free 0.6 0.44 

PGM-free catalyst activity A cm 

− 2 @900 mV iR-free A 0.021 0.044 

Membranes 

P referred maximum operating 

temperature 

°C 120 120 

Area specific proton resistance at: 

120 °C and water partial pressure of 

40 kPa 

Ω cm 

2 0.054 (40 kPa) 

0.019 (80 kPa) 

0.02 

95 °C and water partial pressure of 25 

kPa 

Ω cm 

2 0.027 (25 kPa) 

(at 80 °C 0.02 at 25 kPa, 0.008 at 

45 kPa) 

0.02 

30 °C and water partial pressure of 4 

kPa 

Ω cm 

2 0.018 0.03 

–20 °C Ω cm 

2 0.2 0.2 

Maximum oxygen crossover mA cm 

− 2 0.6 2 

Maximum hydrogen crossover mA cm 

− 2 1.9 2 

Minimum electrical resistance Ω cm 

2 1635 1000 

Durability 

Mechanical Cycles w/ < 10 sccm crossover 24,000 20,000 

Chemical Hours with < 5 mA cm 

− 2 crossover or 

< 20% loss in OCV 

614 500 

Combined chemical/mechanical Cycles until < 5 mA cm 

− 2 crossover or 

< 20% loss in OCV 

Not tested 20,000 

Bipolar Plates 

Plate weight Kg kW 

− 1 < 0.4 0.18 

Plate H 2 permeation Std cm 

3 s − 1 cm 

− 2 Pa − 1 @80 °C, 3 atm 

100% relative humidity (RH) 

< 2 × 10 − 6 2 × 10 − 6 

Corrosion anode μA cm 

− 2 No active peak < 1 and no active peak 

Corrosion cathode μA cm 

− 2 < 0.1 < 1 

Electrical conductivity S cm 

− 1 > 100 > 100 

Flexural strength MPa > 34 (carbon plate) > 40 

Forming elongation % 20–40 40 
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Note that the Leverett J-function was originally developed for two-
hase flow in soils. Thus, new P c -s correlations need to be developed for
brous GDLs [ 147 , 148 ]. Niu et al. [148] conducted a volume of fluids
VOF) study, indicating the Leverett J-function provides a good predic-
ion under low pressures of 1000 and 2000 Pa but predict much smaller
iquid saturations under 4000 and 6000 Pa, as shown in Fig. 10 . In addi-
ion, superhydrophobicity and mixed wettability [ 149 , 150 ], perforated
tructure [151] , and heterogeneity [ 152 , 153 ] will significantly impact
iquid displacement in a porous structure. Machine learning and AI will
e helpful in establishing the correlations for general or specific porous
aterials under various wettability and heterogeneity using the litera-

ure data obtained from experiment, pore-level modeling, and existing
orrelations. 

Another major mechanism for liquid water transport is through the
apor-phase diffusion and phase change, driven by temperature gra-
ients, which is conventionally referred to as heat pipe effect. In this
echanism, the vapor diffusive flux can be expressed by 

 

𝑤,𝑒𝑓𝑓 
𝑔 ( 𝑇 , 𝑃 ) ∇ 𝐶 

𝑤 = 𝐷 

𝑤,𝑒𝑓𝑓 
𝑔 ( 𝑇 , 𝑃 ) ∇ 𝐶 𝑠𝑎𝑡 ( 𝑇 ) = 𝐷 

𝑤,𝑒𝑓𝑓 
𝑔 ( 𝑇 , 𝑃 ) 

𝑑 𝐶 𝑠𝑎𝑡 

𝑑𝑇 
∇ 𝑇 (3)

This flux can be as large as 40% of the water production rate by
he ORR in a fuel cell. In addition, water vapor will diffuse toward
he colder under-land region and will condense locally, thereby deteri-
rating the under-land flooding. A dimensionless parameter, Damköhler

umber ( Da ), is defined to compare the vapor-phase diffusion with the
RR production rates: 

a = 

Rat e of wat er product ion 
Rat e of wat er removal via vapor dif fusion 

= 

𝐼 𝐻 𝐺𝐷𝐿 

2 𝐹 𝐷 

𝑤,𝑒𝑓𝑓 
𝑔 Δ𝐶 

𝑤 
(4)

here H GDL is the GDL thickness, F the Faraday constant, I current den-
ity, and ΔC 

w the difference between the vapor concentrations in the CL
nd GFC. Wang and Chen [155] indicated that a Da of less than 1 en-
ures liquid water under the GFC centerline to be completely vaporized
y the waste heat, leading to a highly humidified GDL region which is
ree of liquid water. 

Fundamental models, including macroscopic and pore-level models,
ave been proposed to investigate two-phase flow and its impacts on fuel
ell performance. The multiphase mixture ( M 

2 ) formulation [156] is a
acroscopic model that is widely adopted in PEM fuel cells [157-160] .
he key idea is to focus on the level of the multiphase mixture and treat
he multiple phases as constituents of a multiphase mixture. The mixture
roperties are defined and the governing equations of mixture variables,
uch as the mixture density, velocity, and species concentrations, are
erived from the conservation laws. In addition, two-fluid models have
een proposed as an alternative macroscopic approach, which resolves
 separate liquid flow equation [ 139 , 161-164 ]. A phase change rate is
dded to each water equation of the two phases, which is determined by
he interfacial area between the two phases, vapor concentration differ-
nce, and mass transfer coefficient [ 161 , 163 ]. In porous components of
EMFCs, this phase change rate can be assumed to be adequately rapid;
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Fig. 10. Comparison of P c -s curves obtained from VOF simulations [148] (both 

constant porosity and varying porosity) with experiments [154] and standard 

Leverett capillary pressure function model. Operating conditions: fiber contact 

angle 𝜃 = 109°, 20 wt% PTFE in GDL. Parameters for the Leverett capillary 

pressure function model: Permeability K = 4.24 × 10 − 12 m 

2 , porosity 𝜀 = 0.79, 

contact angle 𝜃 = 109°
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hus, local equilibrium applies [162] . The macroscopic method is suit-
ble for direct coupling with other physical and electrochemical reaction
inetics to predict the fuel cell performance. To investigate the impacts
f pore structure, the pore network model (PNM), lattice Boltzmann
odel (LBM), and VOFs have been employed to study two-phase flow

y considering the detailed microstructures of GDLs and MPLs, recon-
tructed by either stochastic models [ 148 , 165 , 166 ] or X-ray computed
omography (CT) [ 154 , 167 , 168 ]. The PNM method involves mapping
he complex pore network onto a regular or irregular lattice with local
ore characteristics including size, wettability, and throat connection.
 major advantage of the PNM is that it effectively incorporates impor-

ant local microscopic properties of a porous medium and can analyze
 sample much larger than the other two. LBM is a powerful technique
or investigating transport and fluid flows involving interfacial dynamics
nd complex geometries. It considers a flow to be composed of a collec-
ion of pseudo-particles residing on the nodes of a lattice structure and
ses distribution functions to represent the probability of finding a fluid
article [169] . LBMs are advantageous in eliminating the explicit inter-
ace tracking because of their inherent ability to incorporate particle in-
eractions to yield phase segregation. VOF methods track the interface
etween two immiscible fluids by resolving an equation of the phase
olume fraction 𝛾: the cells fully occupied by liquid water and gas are
arked as 𝛾 = 1 and 0, respectively, while those with a phase fraction
between 0 and 1 have an gas-water interface. The interfacial force is

onverted to a source term in the momentum equation of the cells at
he interface. These pore-level methods are extremely useful to study
icro/mesoscopic flow physics, impacts of material heterogeneity, and
ow-microstructure correlations. However, they are usually computa-
ionally intense and difficult to couple with other physics for full-cell
imulation [11] . 

To probe the in-situ liquid water content in PEM fuel cells, high-
esolution neutron and X-ray radiographies have been employed in re-
ent years. Neutron radiography is a promising method to detect liq-
id water because of the extreme sensitivity of neutron beams to water
elative to other fuel cell materials. Recently, Mishler et al. [170] em-
loyed in-situ neutron radiography to quantify the liquid distribution
rom the inlet to outlet under various RH values, PTFE loadings in GDLs
nd MPLs, flow fields, and flow configurations, as shown in Fig. 11 . They
howed that a high water content is present at low current density un-
er constant stoichiometry and liquid water emerges downstream at low
H and rapidly increases after the onset. Markötter et al. [171] studied
D water distribution in PEM fuel cells using a quasi in-situ tomogra-
hy technique and analyzed water distribution after switch-off. They
emonstrated that the technique enables the study of water content
n individual flow fields of three-fold stacks. X-ray CT resolves the in-
ernal structure and inhomogeneity of a sample using an X-ray beam
hich is attenuated as it goes through the sample [172] . Flückiger et al.

154] employed synchrotron-based X-ray CT to probe the 3D distribu-
ion of liquid water in Toray carbon paper GDLs of various PTFE load-
ngs. A resolution of 1.48 μm was employed to distinguish the fibers
nd most pores in GDLs. They also analyzed liquid water distribution
rom 1D to 3D and the relationship between the capillary pressure and
ater saturation. Zenyuk et al. [167] evaluated the porosity, tortuosity,
nd PSD of a large set of commercially available GDLs under varying
ompression. They observed bimodal PSDs for most of the GDLs, which
pproach unimodal distributions under high compression, and also indi-
ated that a domain of 1 × 1 mm in-plane and full thickness in through-
lane directions accurately represents GDL properties. Fishman et al.
168] studied the spatially varying porosity in GDLs, which was input
o a PEMFC model to study its impact on liquid water distribution [153] .
e et al. [173] observed liquid water breakthrough events in crack-free
PLs using in-situ synchrotron X-ray radiography. They also measured
ater thicknesses, which were used as input for 1D model analysis. 

The two-phase flow images and results can be analyzed using ma-
hine learning and AI, as proposed by Raissi et al. [174] for general fluid
roblems. They developed hidden fluid mechanics (HFM), a physics-
nformed deep-learning framework, to encode the Navier-Stokes equa-
ions into neural networks. Fig. 12 displays the flow contours over a liq-
id droplet in a GFC and fluid flows predicted by HFM machine learning.
n addition, AI technology can help improve the current 3D two-phase
odels of PEM fuel cells via machine learning of visualization data and
OF/LBM simulation results. The mechanisms of two-phase flow and as-
ociated dimensionless parameters can be input for a physics-informed
eep-learning framework to encode the flow equations, droplet dynam-
cs, and capillary action into the neural networks. 

.3. Dynamic operation 

Dynamic operation is frequently encountered in applications of
ortables and FCEVs. For example, startup operation requires a PEM
uel cell to operate and increase its temperature from room to operat-
ng temperature (usually ~80 °C) within minutes, during which both the
hermal and water conditions will greatly change [ 94 , 176 ]. In addition,
ower loss has been observed during transience due to temporary de-
ydration of the anode [177] . The reaction rate or current density may
ndergo undershoot due to delays in oxygen supply to the cathode CL
178] . 

In PEM fuel cells, dynamic operation is affected by various multi-
imescale processes, including charging/discharging of the electrochem-
cal double-layer at the reaction interface (with a time constant of

𝑑𝑙 = 𝛿𝐶𝐿 
2 𝑎𝐶( 1∕ 𝜅 + 1∕ 𝜎) ), gaseous reactant diffusion in GDLs, MPLs,

nd CLs (e.g. 𝜏𝐷 = 𝛿𝐺𝐷𝐿 
2 ∕ 𝐷 

𝑒𝑓𝑓 
𝑔 ), membrane water dynamics including

iffusion, electroosmosis drag, and storage ( 𝜏𝑚 = 

𝜌𝛿𝑚 Δ𝜆
𝐸𝑊 

∕ 𝐼 2 𝐹 ) [ 178 , 179 ],
hase change [ 180 , 181 ], and liquid drainage in GFCs [ 182 , 183 ]. In
erms of timescale, the former two take place fairly fast at a timescale
f less than 0.1 s. Water dynamics in the Nafion R ○ membrane varies
reatly in timescale ranged from 0 to 100 s. The time constants of phase
hange and liquid drainage are dependent on the specific process. These
ime constants characterize the response of each physical process and
ogether shape the multi-timescale characteristics of PEMFC systems.
undamental analysis of the time constants is also important to explain
uel cell signals observed in practice and reduce noises and develop ma-
hine learning schemes to predict dynamic behaviors and optimize con-
rol strategy. 

One of the most complex phenomena in PEM fuel cells is transient
peration involving non-isothermal two-phase flow and hence the heat
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Fig. 11. (above) Water thickness and perfor- 

mance of a PEM fuel cell with a serpentine-flow 

field at 50% inlet RH and the corresponding 

colored neutron images [170] ; (below) sepa- 

rated water distribution for each single cell in 

a three-cell stack [171] . 
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elease/absorption during water condensation/evaporation S fg : 

 𝑓𝑔 = ℎ 𝑓𝑔 �̇� 𝑓𝑔 and �̇� 𝑓𝑔 = 𝜌𝑙 
𝜕𝑠 

𝜕𝑡 
+ ∇ ⋅

(
𝜌𝑙 ⃗𝑢 𝑙 

)
(5)

here h fg is the latent heat of vapor-liquid phase change and �̇� 𝑓𝑔 is the
hase change rate. A practical operation is the dry gas purge technique
o remove excess liquid water for electrode flooding mitigation. In this
peration, excess water in GDLs and the membrane will be vaporized
y dry reactants. Wang and Wang [181] elucidated four de-wetting pro-
esses and corresponding output voltage responses in the ohmic polar-
zation regime. They delineated the GDL de-wetting by two through-
nd in-plane processes, as shown in Fig. 13 (a) and mathematically de-
ived the evolution of the vaporization fronts. It was shown that these
wo elementary processes follow the same equation after normalization.
chneider et al. [183] conducted I-distribution measurements and in-
lane neutron radiography in voltage step experiments to investigate
he local flooding and cell performance, as shown in Fig. 13 (b). They
ndicated that oxygen depletion leads to a strong performance loss un-
er the ribs before the onset of notable liquid water accumulation. Their
esults also indicated a timescale of 10–100 s for water buildup in the
uel cell, consistent with the time constant analysis. Cho et al. [ 184 , 185 ]
nvestigated the effects of MPL and GDL design on PEMFC transient re-
ponses. Their results showed that the transient response is determined
y the capillary pressure gradient through GDLs. The trade-off relation
or PEMFC performance under low and high RHs is mitigated by design-
ng a reverse capillary pressure gradient in MPLs. As to machine learn-
ng, dynamic operation of PEMFCs and real-time monitoring will gener-
te a large amount of data, which is suitable for machine learning and
I to design proper control strategies to achieve load demand and quick
tartup, optimize efficiency and performance, and mitigate degradation.
he physics of two-phase transient, membrane hydration/dehydration,
ime constants, transport dynamics, and electrochemical double-layer
ehaviors can be encoded to the neural networks for effective deep
earning. 

.4. Cold start 

PEM fuel cells must be able to survive and startup from subfreezing
emperatures, also called cold start, for the FCEV application [186-188] .
n freezing environments, water product has a tendency to freeze in
he cathode CL, making it difficult to remove and thus creating mass
ransport limitation which may eventually end the ability for opera-
ion. In practice, the capability of unassisted cold-start is determined
y two competing processes governed by the fuel cell’s water/heat co-
roduction, namely ice production to occupy the cathode CL pores (with
 time constant 𝜏𝑠 𝑖𝑐𝑒 = 

2 𝐹 𝛿𝐶𝐿 
( 1+2 𝛼) 𝐼 ( 

𝜌𝑚 𝜀 𝑚 ( 14− 𝜆0 ) 
𝐸𝑊 

+ 

𝜀 𝐶𝐿 𝜌𝑖𝑐𝑒 
𝑀 

𝑤 ) ) and PEMFC temper-

ture increase to overcome 0 °C ( 𝜏𝑇 , 1 = 

𝜌𝐵𝑃 𝐶 𝑝 𝐵𝑃 𝛿𝐵𝑃 
𝐼( 𝐸 𝑜 − 𝑉 𝑐𝑒𝑙𝑙 ) 

( 273 . 15 − 𝑇 𝑜 ) ). The

atio of the two time constants, 𝛽2 = 

𝜏𝑇 , 1 
𝜏𝑠 𝑖𝑐𝑒 

, then provides a basic crite-

ion to evaluate the cold-start capability, which are determined by the
EMFC design and operation condition [189] . In general, a large CL
hickness ( 𝛿CL ), ionomer fraction ( ɛ m 

), porosity ( ɛ CL ), or small BP thick-
ess ( 𝛿BP ) and thermal capacity ( 𝜌BP Cp BP ) help cold-start capability. In
ddition, supercooled water under subfreezing conditions was observed
o flow to GDL and GFC, which will benefit cold-start capability. Ko et al.
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Fig. 12. (I) Velocity contours of flow over a liquid droplet at the GDL surface in 

a GFC at an inlet velocity of 3.0 m/s [ 137 , 138 , 175 ] [RR16]; (II) 2D channel flow 

over an obstacle using machine learning: the outputs from the regressed velocity 

u and v and pressure p fields shown on the right column. Reference velocity and 

pressure fields are plotted for comparison on the left column [174] . Note that 

the flow directions are opposite in (I) and (II). 
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190] proposed using part of the cathode MPL for the ORR to improve
old-start capability. 

In cold start, ice formation may vary spatially in PEMFCs, even across
 thin CL [ 178 , 191-193 ]. Analysis of the non-uniformity factor � of the
eaction indicated that the ORR rate considerably varies in a CL from
ig. 13. (a) GDL de-wetting in a PEM fuel cell: (above) evolution of liquid saturati

esistance [181] ; (b) characteristic positions of the cathode flow field used for the eva
he membrane to GDL sides under subfreezing temperature because of
he small ionic conductivity of membranes, as given by the following
orrelation for − 30–0 °C: 

𝑚 = ( 0 . 01862 𝜆−0 . 02854 ) exp 
[
4029 

( 1 
303 

− 

1 
𝑇 

)]
for 𝜆 ≤ 7 . 22 (6)

𝑚 = 𝜎𝑚 ( 𝜆 = 7 . 22 ) for 𝜆 > 7 . 22 

For a water content 𝜆 > 7.22, part of the water in the ionomer phase
reezes and thus makes little contribution to the ionic conductivity. In
ractice or CL design, the number of coulombs of charge Q c transferred
efore the output voltage drops to 0.0 V was introduced as a measure of
old-start capability [ 105 , 188 ]. CL composition, cold-start temperature,
embrane hydration, and CL thickness all affect this parameter. 

At the electrocatalyst surface, ice formation may follow two conse-
uent morphologies —initial isolated ice nucleates and then film forma-
ion, as depicted by Fig. 14 . The former imposes a much less impact
n the catalyst activity than the latter. In addition, two major mecha-
isms are proposed for the effects of ice on the ORR activities — cata-
yst surface coverage and oxygen diffusion resistance [ 189 , 194 , 195 ].
urthermore, it has been proposed that ice formation in CLs is fun-
amentally similar to LiOx deposit in lithium-air batteries [ 196 , 197 ]
n terms of impacts on both surface coverage and oxygen diffusion on
he ORR reaction. Two regimes are defined in both fuel cell [198] and
attery [ 199 , 200 ], based on the dominant mechanism of voltage loss.
ig. 14 shows the evolutions of PEMFC voltages and HFR under subfreez-
ng operation. The initial sharp drops are the starting points which im-
ose the electric load, and the output voltage decreases initially, which
s dominated by the catalyst surface coverage by ice product, followed
y a fast drop which is dominated by oxygen blockage due to ice forma-
ion in pores. Du et al. [201] indicated that under the maximum power
ode, the cold-start current density is at high levels and the perfor-
ance improvement caused by membrane hydration and temperature

ncrement may not be observable. Therefore, before the melting point,
he performance drops continuously. Another critical issue related to
old start is CL degradation including the electrochemical surface area
ECSA) loss. GDLs may lose their hydrophobicity and break the fiber
on distribution; (below) responses of output cell voltage and membrane ionic 

luation of (i, ii) local water accumulation and (iii) local current density [183] . 
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Fig. 14. (a) Evolution of PEMFC output voltage and 

HFR under 0.02 A/cm 

2 and –10 °C; (b) ice nucleation 

at the ionomer film covering the catalyst (dashed line); 

(c) connection of ice islands, forming a thin ice film and 

blocking the access to oxygen underneath catalyst; and 

(d) the ice surface coverage factor 𝜏a to describe the 

two mechanisms; the ice film formation starts at s ice = 
0.7 [198] . 
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Fig. 15. Pt degradation mechanisms: (a) Pt oxidation and PtO surface cover- 

age, (b) Place exchange between Pt lattice and adsorbed O atoms, (c) Oxide 

reduction and cathodic dissolution of exchanged Pt, (d) Carbon corrosion, (e) 

Electrochemical Ostwald ripening, (f) Pt 2 + ion dissolution into the membrane 

[112] . 
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inkage during freeze/thaw cycles [202] . Similarly, machine learning
an be applied to predict ice formation, ice volume content, and temper-
ture status during cold start by encoding the ORR kinetics, ice morphol-
gy and impacts at the reaction surface, ionic conductivity at freezing
emperature, and time constants to the neural networks. The physics-
nformed deep learning will facilitate the development of proper con-
rol strategies, including external heating, for successful degradation-
ree cold-starts from various complex environments in practice. 

.5. Durability 

Further development of PEM fuel cells requires not only cost reduc-
ion, but also durability improvement. Durability is usually measured
n terms of the voltage loss per hour under a fixed current, which is
irectly attributed to fuel cell material degradation. It is usually asso-
iated with the electrochemical, mechanical, and chemical stability of
ts components, specifically, the MEAs. The electrochemical/chemical
egradation is mainly associated with catalyst dissolution or ripening,
arbon oxidation, and attack by radicals or ionic species; mechanical
egradation results from a mechanical stressor, such as cyclic compres-
ion, material expansion, or membrane crack formation. ECSA loss is
requently used to measure the degradation of electrocatalyst activity
aused by catalyst ripening/instability and carbon support corrosion
112] . PEMFC degradation often occurs over a long period of time and
s therefore expensive to investigate experimentally. ASTs are usually
efined, following DOE protocols, to investigate material durability in
 relatively short period of time [203] . PEMFC durability has been re-
iewed extensively in the literature [ 95 , 204 , 205 ]. 

For membranes, chemical degradation is often due to attacks by rad-
cals or ionic species; mechanical failure originates from changes in
he membrane structure, such as pinhole formation and crystallinity
hange. Cyclic hydration/dehydration and compression of a fuel cell
ver its lifetime are the main causes of membranes losing their struc-
ural integrity. Pinhole formation, due to cyclic membrane shrinkage
nd swelling, causes crossover of reactant gasses. Degradation due to
hemical stresses may reduce proton conductivity or membrane thick-
ess, which promotes crossover of reactant gasses. Chemical degrada-
ion is often caused by formation of attacking species that damage the
embrane structure. Carboxylic acid and other H-containing end groups

an form during membrane polymerization or as a result of a chemical
eaction, and are usually vulnerable to attack [ 206 , 207 ]. Hence, degra-
ation can occur due to free radical attack on the reactive end groups
 208 , 209 ]. The attack eventually leads to membrane unzipping and con-
uctivity loss. In addition, presence of cation impurities may reduce
roton conductivity because the sulfonic sites have a higher affinity to
oreign cations than H 

+ [210] . These ions catalyze hydrogen peroxide
ollowing the reactions in Eqs. (7) - (10) to form different types of radicals
211-213] . 

 2 𝑂 2 + 𝑀 

𝑧 + → 𝑀 

( 𝑧 +1 ) + 𝐻𝑂 ⋅ + 𝑂 𝐻 

− (7)
𝐻 ⋅ + 𝐻 2 𝑂 2 → 𝐻 2 𝑂 + 𝐻𝑂𝑂⋅ (8)

 

( 𝑧 +1 ) + 𝐻 2 𝑂 2 → 𝑀 

𝑧 + + 𝐻𝑂𝑂 ⋅ + 𝐻 

+ (9)

 2 𝑂 2 → ℎ𝑒𝑎𝑡 + 2 𝐻𝑂⋅ (10)

The effect of single cations on degradation from high to low is: Fe
 Cu > Cr > Al, with iron having the highest catalytic effect on radical

ormation [ 211 , 212 , 214 ]. This type of degradation is often investigated
x-situ by the Fenton test [ 212 , 215 ] or peroxide vapor test [97] . 

Electrochemical degradation is mainly governed by ECSA loss due to
lectrocatalyst and/or carbon support degradation. Electrocatalyst mor-
hology changes are the main driver for this kind of degradation, and
ay be associated with dynamic operation, for example, the cathode
otential cycles between 0.6 V and 0.95 V or rises temporarily above
.35 V during startup and shutdown [204] . Under such conditions, Pt
ecomes electrochemically unstable and may be subject to dissolution.
s the potential voltage increases, Pt 2 + ions dissolve from the cathode
L into the electrolyte. They can diffuse into the membrane because of
he increasing concentration gradient, preventing re-deposition in the
L. A high potential voltage may lead to carbon support corrosion. In
ddition, Pt oxidation may occur, as shown in Fig. 15 and Eqs. (11) - (13) ,
hich list a few main Pt degradation mechanisms. 

 𝑡 ↔ 𝑃 𝑡 2+ + 2 𝑒 − 𝜙𝑟𝑒𝑓 

𝑒𝑞,𝑎.𝐷𝑖𝑠𝑠 
= 1 . 19 𝑉 (11)

 𝑡 + 𝐻 2 𝑂 ↔ 𝑃 𝑡𝑂 + 2 𝐻 

+ + 2 𝑒 − 𝜙𝑟𝑒𝑓 

𝑒𝑞,𝑂𝑥 
= 0 . 98 𝑉 (12)
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Fig. 16. (a) Steady-state concentration of dissolved Pt as a function of potential for Pt nanoparticles (Pt/C), (b) Pt dissolution profiles: time and potential-resolved 

dissolution profiles of 3 nm Pt catalyst (experimental conditions: 0.1 M HClO 4 , potential window: 0.05 to different UPL (0.9 V–1.6 V), scan rate: 5 mV/s), (c) Pt 

dissolution for cathodic and anodic portions of potential cycle as a function of cathodic scan rate (potential window: 0.05 V–1.6 V) [217] . 
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 𝑡𝑂 + 2 𝐻 

+ ↔ 𝑃 𝑡 2+ + 𝐻 2 𝑂 (13)

The ECSA loss due to Pt dissolution is mainly associated with a PSD
hange of electrocatalyst particles, which occurs via four main mecha-
isms: (i) Pt grain migration on the carbon support, (ii) Pt dissolution
nd re-deposit on larger particles (Ostwald ripening), (iii) Pt dissolution
nd migration into the membrane, and (iv) detachment of Pt particles
ue to carbon corrosion [206 − 216] . 

Another mechanism of Pt dissolution is place exchange [218] , as
hown in Fig. 15 (b). During the anodic Pt dissolution in Eq. (11) , an
xide layer forms on the catalyst, which reduces the Pt dissolution rate.
 further increase in the voltage potential or holding the potential con-
tant for a sufficient period of time subjects the adsorbed oxygen atoms
o place exchange from the surface to sub-surface positions. The place
xchange exposes the Pt atoms and permits the absorption of new ox-
des. In the place exchange process, oxides penetrate the Pt lattice [218] .
hus, subsequent potential sweeps not only reduce the formed oxides,
ut also lead to the cathodic dissolution of the exchanged Pt. The place
xchange mechanism is described in Eqs. (14) and (15) . 

 𝑡𝑂 ↔ 𝑂 − 𝑃 𝑡 (14)

 − 𝑃 𝑡 + 2 𝐻 

+ ↔ 𝐻 2 𝑂 + 𝑃 𝑡 2+ (15)

Fig. 16 shows the dissolved Pt concentration and rate as a function
f the potential and cathodic scan rate. In the event of jump to a high
otential, such as in startup/shutdown operation, carbon corrosion may
ccur, leading to losses of the electrical conductivity and supported Pt
atalyst [219] . The dissolution mechanism follows Eq. (16) [107] , 

 + 2 𝐻 2 𝑂 → 𝐶 𝑂 2 + 4 𝐻 

+ + 4 𝑒 − 𝜙𝑟𝑒𝑓 

𝑒𝑞,𝐶𝐶 
= 0 . 207 𝑉 (16)

Pt dissolution and carbon support corrosion will cause changes in the
L microstructure and thickness. Fig. 17 shows SEM images of the CLs

n the Mirai FCV after AST testing, indicative of a significant decrease
n the CL thickness after the carbon support AST testing (c). 

. Machine learning in PEMFC development 

.1. Machine learning overview 

Machine learning, an important area in artificial intelligence (AI),
s a scientific discipline involving algorithms that learn from data. The
earning process occurs as the program forms a pattern from existing
ata that is then valid for new data. Machine learning has been ap-
lied to promote new technologies, such as image recognition, natural
anguage processing, and autopiloting, and is used to reexamine tradi-
ional disciplines for revolutionary changes. According to learning style,
achine learning algorithms can be generally classified into three types:

upervised learning, unsupervised learning, and reinforcement learning,
s shown in Table 9 . Owing to its accuracy and efficiency, supervised
earning is commonly used in energy-related fields [221-224] . Table 10
ists popular supervised learning algorithms and their characteristics.
nsupervised learning algorithms, such as principal component analy-

is (PCA), singular value decomposition (SVD), and k-means clustering,
re also used in energy and material studies. 

Among many machine learning methods, the rapid development of
eep learning in recent years has pushed it to the forefront of the field
f AI. Deep learning is the ANN with deep structures or multi-hidden
ayers [229-232] . It can achieve good performance with the support of
ig data and complex physics, and has a much simpler mathematical
orm than many traditional machine learning algorithms. The relation-
hip between AI, machine learning, and deep learning is shown in Fig. 2 ,
long with the number of US patent applications per year [20] . We can
xpect that deep learning, such as physics-informed learning, will be-
ome the most important path to AI. However, deep learning relies on
ig data, and thus traditional machine learning still have strong appli-
ations, especially for interdisciplinary studies, and can solve problems
ith reasonable amounts of data. Many open-source machine learning

rameworks have been developed and made available to the general
ublic, including Scikit-Learn, Caffe2, H2O, PyTorch (for neural net-
orks), TensorFlow (for neural networks), and Keras (for neural net-
orks). 

.2. Machine learning for performance prediction 

PEMFC performance is characterized by the polarization curve, also
alled the I-V curve, which is determined by a number of factors includ-
ng fuel cell dimensions, material properties, operation conditions, and
lectrochemical/physical processes [233-236] . Various physical mod-
ls and experimental methods have been proposed to predict or di-
ectly measure the I-V curve, which are reviewed by many other works
 158 , 160 , 202 , 237 ]. As an alternative approach, machine learning is ca-
able of establishing the relationship between inputs and output per-
ormance through proper training of existing data, as shown in Fig. 18 .
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Fig. 17. SEM cross-section images of cells from a Toyota Mirai after (a) 300 h of driving, (b) 300 h of driving + 30,000 catalyst ASTs, and (c) 300 h of driving + 30,000 

support ASTs [220] . 

Table 9 

Characteristics and typical tasks of supervised learning, unsupervised learning, and reinforcement learning. 

Characteristics Typical tasks 

Supervised 

learning 

Dataset is labeled with input and output as ‘feature’ and ‘label’. 

Its algorithms generally aim to train the mapping between input and output. 

The obtained pattern can predict the “label ” of new data from the “feature ”. 

Regression : The predictive output is a continuous value. 

Classification : The predictive output is discrete. 

Unsupervised 

learning 

Dataset is not labeled. 

Its algorithms are used to address problems impossible to manually label 

data due to lack of prior knowledge or cost. 

Clustering : Samples of similar features are grouped to form 

clusters. 

Dimensionality reduction : Core features are collected and 

redundant information is reduced. 

Reinforcement 

learning 

It trains an agent by reward or punishment for a state change and 

interaction with the environment, allowing the agent to decide the best next 

action to maximize the reward. 

Q-learning : It is a "model-free" algorithm, and can handle 

problems with stochastic transitions and rewards without 

requiring adaptations. 

Table 10 

Popular supervised learning algorithms and characteristics [225-228] . 

Algorithms Characteristics 

Linear regression It fits a linear model based on ordinary least squares. 

It is the common benchmark algorithm to evaluate the prediction performance of other regression algorithms. 

k-nearest neighbor (kNN) It is a simple algorithm that classifies a new point by a majority vote of its k nearest neighbors in the available dataset. 

Logistic regression It is a linear model for classification rather than regression, especially binary classification. 

A logistic function is used to calculate the probability of a single trail. 

Decision tree It can learn simple decision rules from data features to predict targets. 

It can solve both regression and classification problems. 

Naïve Bayes It is based on Bayes’ theorem with the assumption of conditional independence between the features. 

Support vector machine (SVM) It is based on the Vapnik-Chervonenkis dimension and structural risk minimization in statistical theory. 

It aims to construct the hyperplane in a high-dimensional space to classify the samples. 

It can solve regression problems, usually known as support vector regression. 

Gaussian process A generic supervised learning algorithm that can solve both regression and classification problems. 

Artificial neural network (ANN) It is based on modern neuroscience to process information by simulating the neural network processing in organic brains. 

Its structure is multi-layer perceptron, consisting of a large number of connected neurons. 
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ehrpooya et al. [233] experimentally constructed a database of PEMFC
erformance under various inlet humidity, temperature, and oxygen and
ydrogen flow rates. A two-hidden-layer ANN was then trained using the
atabase to predict the performance under new conditions. Total 460
oints are contained in the database with 400 for training and 60 for
esting, and R 

2 of 0.982 (for the training) and 0.9723 (for the test) was
chieved in their study. Han and Chung [234] developed data-driven
odels using ANN and SVM to predict fuel cell performance and com-
are their predictions, as shown in Fig. 19 . Both models showed accept-
ble fitting with R 

2 > 0.98, with the ANN performing better based on
heir database. Kheirandish et al. [ 235 , 236 , 238 ] compared ANN, SVM,
nd Hebbian learning algorithms using their database of the stack volt-
ge and efficiency. They showed that all outperformed the linear regres-
ion with the SVM better than ANN. For regression tasks using a small
atabase in a range of 100 s to 1000s data points, the ANN and SVM
re the most common algorithms for data-driven models, and generally
how acceptable prediction for studying fuel cell performance. 

In addition to steady-state performance, Chavez-Ramirez et al.
239] investigated the dynamics of PEM fuel cell using a two-hidden-
ayer ANN with experimental database. Bicer et al. [240] generated a
atabase from the Matlab simulation of a physics-based model to train
heir two-hidden-layer ANN to predict fuel cell dynamics. Although pre-
icting dynamic performance under various conditions, they ignored the
ime-series characteristics of the dynamic data with the inputs including
nly operating conditions without time. Thus, they only predicted the
elationship between performance and operating conditions at a specific
ime, and no dynamic behaviors were analyzed. Using time-series data
nd proper algorithms for machine learning is still highly desirable for
redicting/analyzing PEMFC dynamics and developing control strate-
ies. 
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Fig. 18. ANN structure between inputs (operating conditions, including anode 

and cathode relative humidity (RH), temperature, current, and pressure, as ex- 

amples) and output (fuel cell voltage). 
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Unlike physical models, the mapping between inputs and outputs
onstructed by machine learning models does not follow an actual physi-
al process; thus, the machine learning approach is also called the black-
ox model. Machine learning has unique advantages in PEMFC model-
ng, which requires no prior knowledge, especially of the complex cou-
led transport and electrochemical processes occurring in PEMFC oper-
tion. This significantly reduces the level of modeling difficulty and also
akes it possible to take into account any processes in which the phys-

cal mechanisms are not yet known or formulated. The machine learn-
ng method is also advantageous in terms of computational efficiency
n the implementation process after proper training. This characteristic
akes machine learning potentially extremely important in the practical
EMFC applications which usually involve a large-size multiple-cell sys-
em, dynamic variation, and long-term operation. For a complex physi-
al model that takes multi-physics into account, the computational and
ime costs are usually too high; a simplified physical model lacks of high
rediction accuracy. For even a small-scale stack of 5–10 cells, physics-
odel-based 3D simulation usually requires 10–100 million gridpoints

nd takes days or weeks for predicting one case of steady-state opera-
ion [ 158 , 160 , 241 ]. In this regard, machine learning could greatly help
o broaden the application of complex physical models by leveraging
n prediction accuracy and computational efficiency. Using the simu-
ation data from complex physical models to train a machine learning
odel is a popular approach, usually referred to as surrogate model-

ng. A surrogate model can replace the complex physical model with
imilar prediction accuracy but higher computational efficiency. Wang
t al. [242] developed a 3D fuel cell model with a CL agglomerate sub-
odel to construct a database of the PEMFC performance with various
L compositions. A data-driven surrogate model based on the SVM was
hen trained using the database, which exhibited comparable prediction
apability to the original physical model with several-order higher com-
utational efficiency. It only took a second to predict an I-V curve using
he surrogate model versus hundreds of processor-hours using the 3D
hysics-based model. Owing to its computational efficiency of the surro-
ate model, the surrogate model, coupled with a generic algorithm (GA),
s suitable for CL composition optimization. Similarly, Khajeh-Hosseini-
alasm et al. [243] combined a CL physical model and ANN to develop
 surrogate model to predict the cathode CL performance and activation
verpotential. For fast prediction of the multi-physics state of PEM fuel
ell, Wang et al. [244] developed a data-driven digital twinning frame-
ork, as shown in Fig. 20 . A database of temperature, gas reactant, and
ater content fields in a PEM fuel cell under various operating condi-

ions was constructed using a 3D physical model. Both ANN and SVM
ere used to solve the multi-physics data with spatial distribution char-
cteristics. The data-driven digital twinning framework mirrored the
istribution characteristics of multi-physics fields, and ANN and SVM
xhibited different prediction performances on different physics fields. 

Application of machine learning in PEMFC performance prediction
as many distinct advantages, and it will continue to be popular in the
EMFC community. However, as it does not require physical represen-
ation, skepticism remains that it may lose efficacy in scenarios that
re not included in the test data set. Developing a hybrid model that
ombines physical process and machine learning, and encoding physi-
al mechanisms into machine learning would improve the predictions of
uel cell performance, dynamic behaviors, and physical state in complex
cenarios. There is a great potential to improve the current two-phase
odels (e.g. the two-fluid and mixture approaches) of PEM fuel cells by
sing AI technology, for example, machine learning analysis of visual-
zation data and VOF/LBM simulation results. Physics-informed neural
etworks were recently proposed by Raissi et al. [174] , known as hid-
en fluid mechanics (HFM), to encode the Navier-Stokes (NS) equation
nto deep learning for analyzing fluid flow images, as shown in Fig. 21 .
uch a strategy can be extended to the deep learning of two-phase flow
nd fuel cell performance by incorporating relevant physics, such as the
apillary pressure correlation, Darcy’s law, and the Butler-Volmer equa-
ion, into the neural networks. Table 11 summarizes the main physics
n each PEMFC component that deep learning can incorporate to effec-
ively achieve the design targets. 

.3. Machine learning for material selection 

Machine learning is widely used in the chemistry and material
ommunities to discover new material properties and develop next-
eneration materials [245-247] . Experimental measurement, character-
zation and theoretical calculation are main traditional methods to di-
gnose or predict the properties of a material, which are usually ex-
ensive in terms of cost, time, and computational resources. Material
roperties are influenced by many intricate factors, which increases the
ifficulty level in the search for optimal material synthesis using only
raditional methods. Machine learning can assist in material selection
Fig. 19. Comparison of experimental database and 

ANN/SVM predictions [234] . 
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Fig. 20. Workflow of data-driven digital twinning framework [244] . 

Fig. 21. Arbitrary training domain in the wake of a cylinder using Navier-Stokes (NS)-informed neural networks [174] : (A) Domain generating training data for 

concentration and reference data for velocity and pressure using direct numerical simulation. (B) Training data on concentration c ( t , x , y ) in an arbitrary domain in 

the shape of a flower located in the wake of the cylinder. The solid black square corresponds to a very refined point cloud of data, and the solid black star corresponds 

to a low-resolution point cloud. (C) A physics-uninformed neural network (left) takes the input variables t , x , and y and outputs c , u , v , and p . By applying automatic 

differentiation on the output variables, the transport and NS equations are encoded in the physics-informed neural networks e i , i = 1,…, 4 (right). (D) Velocity and 

pressure fields regressed by means of hidden fluid mechanics (HFM). (E) Reference velocity and pressure fields obtained by removing the arbitrary domain in (A), 

used for testing the performance of HFM. (F) Relative L 2 errors estimated for various spatiotemporal resolutions of observations for c . On the top line, the spatial 

resolution for each case is listed; on the line below, the corresponding temporal resolution over 2.5 vortex shedding cycles is listed. 

a  

i  

fi  

p  

t  

e  

s  

u  

i  

m  

g  

p  

l  

f  

u  

i

nd property prediction using existing databases, which is advantageous
n taking into account unknown physics and greatly increasing the ef-
ciency. As example, in the catalyst design absorbate binding energy
rediction by the empirical Sabatier principle is widely used for the op-
imization of activity in catalyst design ( Fig. 22 (a)) [247] . To remove the
mpirical equation, a database of binding energy for different catalyst
tructures constructed by characterization or theoretical calculation is
sed to train a machine learning model, which shows a great efficiency
n predicting the catalyst activity in a wide range to identify the opti-
al solution of the catalyst structure ( Fig. 22 (b)) [247] . Owing to the

reat potentials of machine learning in chemistry and materials science,
rofessional tools have been developed, along with universal machine
earning frameworks, and numerous structure and property databases
or molecules and solids can be easily accessed to model training. Pop-
lar professional machine learning tools and databases are summarized
n Table 12 [224] . 
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Table 11 

Major physics in PEM fuel cell for physics-informed machine learning. 

Component Major Physics for Machine Learning Design/Material Targets 

PEM Ion transport (i). 

Water transport and uptake and dynamics (ii). 

Subfreezing performance (ix). 

PEM degradation mechanisms (x). 

H2, O2, or N2 transport (iv) 

Improve durability, ionic conductivity, and mechanical robustness. 

Reduce cost and water dependence of ionic conductivity, and reduce 

cross-overs of H2, O2, and N2. 

CL Ion transport (i). 

Electrochemical reaction kinetics (iii). 

Oxygen/hydrogen transport in both pores and ionomer film (iv). 

Ice formation (ii), (viii). 

Electrocatalyst degradation mechanisms (x). 

Two-phase flow (ii), (vii), (viii). 

Reduce PMG electrocatalyst loading and carbon corrosion. 

Improve electrocatalyst stability and durability, CL performance, 

water removal, oxygen transport, proton conductivity, and cold-start 

capability. 

GDL/MPL Two-phase flow (ii), (vii), (viii). 

Species transport (iv). 

Heat transfer (v), (viii). 

Electric current conduction (vi). 

Phase change and heat pipe effects (ii), (viii). 

Improve water and thermal management. 

Reduce electric ohmic loss and gaseous reactant transport resistance. 

GFCs Two-phase flow (ii), (vii), (viii). 

Droplet dynamics at GDL surface (vii). 

Heat transfer/electric current conduction for porous media flow 

fields (v), (viii)/(vi). 

Evenly distribute gaseous reactants. 

Mitigate fuel cell flooding. Reduce pumping power loss. 

BPs Heat transfer (v). 

Electric current conduction (vi). 

Corrosion mechanisms. 

Reduce material/fabrication cost. 

Improve corrosion resistance. 

Prevent leakage. 

Reduce heat/electric resistance. 

i) The Nernst–Planck equation. 

ii) The water conservation equation, Eq. (3) . 

iii) Butler-volmer equation, Tafel equation. 

iv) The conservation equation of O2, H2, and N2; Molecular Dynamics (MD) equations. 

v) The energy conservation equation. 

vi) Ohm’s law. 

vii) Darcy’s law, Navier stokes equations, VOF, PNM, LBM, and Eq. (1 - 2 ) 

viii) Phase change or Eq. (5) . 

ix) Eq. (6) . 

x) Eq. (7-16). 

Fig. 22. (a) Traditional method for predicting optimal catalyst activity by the empirical Sabatier principle, and (b) workflow of catalyst screening via machine 

learning [247] . 
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For catalyst optimization, Zhu et al. [248] combined the density
unctional theory (DFT) computation and machine learning to efficiently
creen the property of dual-metal-site catalyst (DMSC) that increases the
RR activity. They conducted DFT computation to predict a series of
atalysts, simplified these features, reserved the most relevant features
or the database, and trained the fitting equation between the ORR ac-
ivity and catalyst property. The basic workflow is shown in Fig. 23 (a).
radient-boosted regression (GBR) was used as the machine learning
lgorithm. Fig. 23 (b) compares the values of reaction free energies of
H 

∗ by the machine learning prediction and DFT computation, with a
ow RMSE of 0.036 and a high R 

2 of 0.993, demonstrating that the GBR
lgorithm effectively trained the model to achieve accurate prediction.
s shown in Fig. 23 (c), seven features most related to catalytic perfor-
ance in order of importance were given, including the electron affinity

f two metal atoms (EA1 and EA2), the sum of the vdW radius of two
etal atoms (R1 + R2), the difference in the Pauling electronegativity

etween two metal atoms (|P1 – P2|), the product of ionization energy
f TM1 (IE1), the distance between two metal atoms (IE1 × L), the
um of Pauling electronegativity of two metal atoms (P1 + P2), and
he average distance between TM1/TM2 atoms and the surrounding N
toms ( ( 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 + 𝑑5 + 𝑑6 )∕6 ) . In addition, machine learning
as also applied to material selection of battery electrodes [249] , but

arely to PEMFC materials of electrodes and membrane, which could be
 future research direction for the PEMFC community. 

.4. Machine learning for durability 

A durable and stable PEM fuel cell that is reliable for the entire life
f the system is crucial for its commercialization. Thus, it is important
o predict the state of health (SoH), the remaining useful life (RUL), and
urability of PEM fuel cell using the data generated from monitoring
nits [ 112 , 250 , 251 ]. The cell voltage is the most important indicator
f fuel cell performance and thus is a popular output parameter in the
achine learning. In recent years, machine learning has been employed

o predict fuel cell durability and SoH, which can generally be classified
s model-based and data-driven approaches. The former method relies
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Table 12 

Publicly accessible professional machine-learning tools for chemistry and material, and structure and property databases for molecules and solids. The table is 

developed following the format of that in Ref. [224] by adding additional information. 

Name Description URL 

Machine learning tools for chemistry and material 

Amp Package to facilitate machine learning for atomistic calculations https://bitbucket.org/andrewpeterson/amp 

ANI Neural-network potentials for organic molecules with Python interface https://github.com/isayev/ASE _ ANI 

COMBO Python library with emphasis on scalability and efficiency https://github.com/tsudalab/combo 

DeepChem Python library for deep learning of chemical systems https://deepchem.io 

GAP Gaussian approximation potentials http://libatoms.org/Home/Software 

MatMiner Python library for assisting machine learning in materials science https://hackingmaterials.github.io/matminer 

NOMAD Collection of tools to explore correlations in materials datasets https://analytics-toolkit.nomad-coe.eu 

PROPhet Code to integrate machine-learning techniques with quantum-chemistry approaches https://github.com/biklooost/PROPhet 

TensorMol Neural-network chemistry package https://github.com/jparkhill/TensorMol 

Computed structure and property databases 

AFLOWLIB Structure and property repository from high-throughput ab initio calculations of 

inorganic materials 

http://aflowlib.org 

Computational 

Materials 

Repository 

Infrastructure to enable collection, storage, retrieval and analysis of data from 

electronic-structure codes 

https://cmr.fysik.dtu.dk 

GDB Databases of hypothetical small organic molecules http://gdb.unibe.ch/downloads 

Harvard Clean 

Energy Project 

Computed properties of candidate organic solar absorber materials https://cepdb.molecularspace.org 

Materials Project Computed properties of known and hypothetical materials carried out using a standard 

calculation scheme 

https://materialsproject.org 

NOMAD Input and output files from calculations using a wide variety of electronic structure 

codes 

https://nomad-repository.eu 

Open Quantum 

Materials Database 

Computed properties of mostly hypothetical structures carried out using a standard 

calculation scheme 

http://oqmd.org 

NREL Materials 

Database 

Computed properties of materials for renewable-energy applications https://materials.nrel.gov 

TEDesignLab Experimental and computed properties to aid the design of new thermoelectric 

materials 

http://tedesignlab.org 

ZINC Commercially available organic molecules in 2D and 3D formats https://zinc15.docking.org 

Experimental structure and property databases 

ChEMBL Bioactive molecules with drug-like properties https://www.ebi.ac.uk/chembl 

ChemSpider Royal Society of Chemistry’s structure database, featuring calculated and experimental 

properties from a range of sources 

https://chemspider.com 

Citrination Computed and experimental properties of materials https://citrination.com 

Crystallography 

Open Database 

Structures of organic, inorganic, metal–organic compounds and minerals http://crystallography.net 

CSD Repository for small-molecule organic and metal–organic crystal structures https://www.ccdc.cam.ac.uk 

ICSD Inorganic Crystal Structure Database https://icsd.fiz-karlsruhe.de 

MatNavi Multiple databases targeting properties such as superconductivity and thermal 

conductance 

http://mits.nims.go.jp 

MatWeb Datasheets for various engineering materials, including thermoplastics, semiconductors 

and fibres 

http://matweb.com 

NIST Chemistry 

WebBook 

High-accuracy gas-phase thermochemistry and spectroscopic data https://webbook.nist.gov/chemistry 

NIST Materials 

Data Repository 

Repository to upload materials data associated with specific publications https://materialsdata.nist.gov 

PubChem Biological activities of small molecules https://pubchem.ncbi.nlm.nih.gov 

Fig. 23. (a) Workflow of activity prediction and design of DMSC, and (b) comparison of the reaction free energy values of OH 

∗ by machine learning prediction and 

DFT computation in the training set and test set, and (c) feature importance based on the mean impact value in Zhu et al.’s study [248] . 

https://bitbucket.org/andrewpeterson/amp
https://github.com/isayev/ASE_ANI
https://github.com/tsudalab/combo
https://deepchem.io
http://libatoms.org/Home/Software
https://hackingmaterials.github.io/matminer
https://analytics-toolkit.nomad-coe.eu
https://github.com/biklooost/PROPhet
https://github.com/jparkhill/TensorMol
http://aflowlib.org
https://cmr.fysik.dtu.dk
http://gdb.unibe.ch/downloads
https://cepdb.molecularspace.org
https://materialsproject.org
https://nomad-repository.eu
http://oqmd.org
https://materials.nrel.gov
http://tedesignlab.org
https://zinc15.docking.org
https://www.ebi.ac.uk/chembl
https://chemspider.com
https://citrination.com
http://crystallography.net
https://www.ccdc.cam.ac.uk
https://icsd.fiz-karlsruhe.de
http://mits.nims.go.jp
http://matweb.com
https://webbook.nist.gov/chemistry
https://materialsdata.nist.gov
https://pubchem.ncbi.nlm.nih.gov
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Table 13 

Machine learning methods and their characteristics for PEMFC prognostics. 

Method Characteristics References 

Neural network 

(NN) 

Data-driven. Interconnected neurons are linked using weights. The weights are optimized during training. The unknown 

functions are determined using a large number of data. Its prediction is accurate but computationally expensive. 

[ 252 , 253 , 260 ] 

Adaptive 

neuro-fuzzy 

interface system 

(ANIFS) 

Data-driven. Similar to the NN method. The membership functions and rules are used to connect different layers. 

Computation is efficient. Prediction is reliable. 

[ 252 , 262 ] 

Grid long 

short-term 

memory (G-LSTM) 

recurrent neutral 

network (RNN) 

Data-driven. Compared to NN, LSTM avoids exploding gradients and vanishing problems and is suitable for long-term 

prediction. Prediction accuracy can be optimized. 

[253] 

Summation- 

wavelet extreme 

learning machine 

(SW-ELM) 

Data-driven. SW-ELM is the combination of NN and wavelet theory. It doesn’t require big data and is suitable for 

prediction at frequent intervals. 

[ 254 , 266 ] 

lstm rnn with 

auto-regressive 

integrated moving 

average (arima) 

data-driven. combination with arima enables effective tracking of degradation tendency and reduces influence of the 

recovery phenomenon. its algorithm is simple and easy for online application. 

[255] 

gray neural 

network model 

(gnnm) 

data-driven. coupling with the gray theory enables use of limited historical data and is suitable for degradation 

involving nonlinear changes and many influencing factors. 

[257] 

Particle filtering 

(PF) 

Model-based. Monte-Carlo technique is used to solve nonlinear Bayesian tracking for the probability distribution. It is 

time-consuming but addresses complex conditions. 

[ 252 , 265 ] 

Sparse auto 

encoder (SAE) NN 

Model-based and data-driven combination. SAE can extract prediction features automatically and NN is used to predict 

the RUL. It can predict dynamic conditions. 

[260] 

Moving window 

method 

Model-based and data-driven combination. Both the fade trend and non-linear features are captured. It can iteratively 

update the prediction when newly measured data become available 

[256] 

Self-organizing 

maps (SOMs) 

Unsupervised learning. Monitoring data are automatically visualized into a 2D space, thus it is easy and intuitive. It can 

be used to monitor the fuel cell SoH. 

[258] 

Echo State 

Network (ESN) 

Supervised learning based on the principle of recurrent neural networks (RNNs). A nonlinear response signal is induced 

by driving random, large and fixed RNNs. A trainable combination of all these response signals is then used to obtain a 

desired output signal. Such a method can reduce the error associated with the prediction of remaining life. 

[ 261 , 264 ] 
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n physical or semi-empirical models, which can be computationally
xpensive. The data-driven method uses historical data of a system to
redict the SoH and RUL. In the literature, both types of methods have
een investigated for the SoH and RUL prediction, including some stud-
es that compare various algorithms. A summary of various ML meth-
ds employed for PEMFC prognostic and their characteristics is given in
able 13 . 

Mao and Jackson [252] compared the ANN, the adaptive neuro-fuzzy
nference system (ANFIS), and the particle filtering (PF) method in the
EMFC voltage and SoH prediction. It was shown that the ANFIS pro-
ides an accurate forecast at a low computation cost, and the PF is suit-
ble for complex situations, such as fuel cell faults. Ma et al. [253] de-
eloped a novel data-driven deep learning model for degradation prog-
ostics using the grid long short-term memory (G-LSTM) recurrent neu-
al network (RNN). Compared to traditional neural networks, the pro-
osed model effectively avoided exploding gradients and optimized pre-
iction accuracy. It is also easy to implement online due to its simple
tructure and can be used for improving durability when coupled with a
roper control strategy. Javed et al. [254] presented a constraint-based
ummation-wavelet extreme learning machine (SW-ELM) algorithm to
mprove the robustness and applicability of data-driven prognostics. A
ew SoH indicator was introduced to characterize the dynamic behav-
ors of a stack voltage and to further improve prediction accuracy. The
odel also showed promise in estimating the RUL. Ma et al. [255] pro-
osed a LSTM RNN and an auto-regressive integrated moving average
ARIMA) fusion method to predict fuel cell SoH. LSTM enabled effi-
ient prediction of long-term degradation, while the fusion with ARIMA
racks degradation tendency. The model was validated against aging
xperimental datasets from two PEM fuel cells and showed promise in
acilitating management strategy design and performance prediction be-
ore experimental tests. Zhou et al. [256] combined the model-based and
ata-driven prognostic methods and used the moving window method
o train the models, update the weight factors, and further fuse the pre-
iction iteratively. The model-based approach predicted the aging trend
ver a long period while the data-driven approach was used to describe
he local non-linear characteristics of voltage degradation. Thus, the pro-
osed hybrid prognostic approach simultaneously described the long-
erm degradation and short-term voltage variation characteristics. Chen
t al. [257] proposed a gray neural network model (GNNM) method in
ombination with the particle swarm optimization (PSO) and the mov-
ng window method. The effects of current density, inlet temperature,
nlet hydrogen pressure, and inlet RH were taken into account in the
odel to better forecast degradation under various operating conditions.
hey also investigated the influence of different moving window sizes
n degradation prediction. Onanena et al. [258] proposed an unsuper-
ised model to monitor fuel cell SoH via the electrochemical impedance
pectroscopy (EIS) data. Compared to supervised methods, the model
oes not require a large amount of labeled data, and is efficient and
asy to implement. The model is based on self-organizing maps (SOMs),
hich can be used to visually identify the main clusters in datasets and

orrect eventual data mislabeling. Mayur et al. [259] coupled an FCEV
odel with a cell-level catalyst degradation model to estimate durabil-

ty and provide insights into spatially resolved cell performance. The
ffect of transient loading was investigated in terms of the cathode po-
ential, water/oxygen concentration, and spatial variation in the Pt dis-
olution rate in the cathode CL. It was found that the Pt dissolution rate
s high under low power demand and exhibits highly dynamic behav-
or during a driving cycle. Liu et al. [260] developed a RUL prediction
echnique for PEM fuel cells based on the sparse autoencoder (SAE) and
eep neural network (DNN). The SAE was used to extract the prediction
eatures automatically, while the DNN was applied to predict the RUL.
he Gaussian-weighted moving average filter was adopted to smooth
oisy data. The model prediction was compared with a total of 127,369
xperimental data points, indicating an accuracy as high as 99.68%. In
ddition, the model is capable of predicting the RUL under dynamic
onditions. Morando et al. [261] proposed a data-driven algorithm to
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Table 14 

Summary of recent machine learning studies on performance, dynamics, durability, SoH, and RUL of PEM fuel cells. 

Machine Learning Targets for PEM fuel cells Remarks Reference 

ANN Fuel cell performance (output voltage) prediction i Data points: 460 

ii Data sources: experiment 

iii Two-hidden-layer ANN. 

[233] 

ANN and SVM Fuel cell performance (output voltage) prediction i Data points:1377 

ii Data sources: experiment 

iii One-hidden-layer ANN 

iv ANN (R 2 of 0.999) outperforms SVM (R 2 of 0.980) 

[234] 

Linear regression; ANN Output voltage and efficiency prediction i Data points: 723 

ii Data sources: experiment 

iii Two-hidden-layer ANN 

[235] 

ANN; SVM Output voltage and efficiency prediction i Data points: 9527 

ii Data sources: experiment 

iii One-hidden-layer ANN 

iv SVM (R 2 of 0.99) outperforms ANN (R 2 of 0.97) 

[236] 

Hebbian learning Output voltage and efficiency prediction i Data points: 1000 

ii Data sources: experiment 
[238] 

ANN Dynamic voltage prediction i Data sources: experiments 

ii Two-hidden-layer ANN 

[239] 

ANN Dynamic voltage prediction i Data sources: Matlab simulation using physics-based model 

ii Two-hidden-layer ANN 

[240] 

SVM Output voltage prediction at various CL compositions. i Data points: 65 

ii Data sources: 3D physics-based simulation 
[242] 

ANN Activation overpotential at various CL compositions. i Data sources: 1D homogenous agglomerate simulation 

ii One-hidden-layer ANN 

[243] 

ANN; SVM Multi-physics fields of PEM fuel cells. i 100 case scenarios, and 7000 data points 

ii Data sources: 3D physics-based simulation 

iii Two-hidden-layer ANN 

[244] 

Gradient-boosted 

regression 

ORR activity prediction of catalysts. i Data sources: simulation (DFT) [248] 

ANN; Adaptive 

neuro-fuzzy inference 

system (ANFIS) 

Fuel cell performance (output voltage) prediction with time for prognostics. i Data sources: experiments 

ii One-hidden-layer ANN 

iii ANFIS has highest efficiency in computation time 

[252] 

Grid long short-term 

memory recurrent neutral 

network (G-LSTM-RNN) 

Fuel cell performance (output voltage) prediction and degradation. i Data sources: experiments (from three fuel cells) from 400 h testing 

each. 

ii One-hidden-layer RNN 

iii Sliding window size update 

[253] 

Summation-wavelet 

extreme learning machine 

(SW-ELM) 

Fuel cell output voltage with time for degradation and RUL prognostics. i Data sources: stack experiments 

ii 70 A and 1155 h. 

iii Hourly voltage as a health indicator. 

iv RUL is carried out in two groups, a prognostic task at initial 650 h and 

updates every 10 h as new data. 

[254] 

( continued on next page ) 
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Table 14 ( continued ) 

Machine Learning Targets for PEM fuel cells Remarks 

Reference 

Long short-term memory 

recurrent neutral network 

(LSTM-RNN) 

Fuel cell output voltage with time for degradation i Data sources: experiments 

ii 1000 h aging data at 0.7 Acm 

− 2 . 

iii The voltage as an indicator of health. 

[255] 

a hybrid method which 

combines a degradation 

empirical model and 

non-linear autoregressive 

neural network (narnn) 

fuel cell output voltage with time for degradation i data sources: experiments 

ii the empirical model for long-term aging prediction and the narnn for 

nonlinear characteristics prediction of degradation. 

iii a moving window method for the hybrid prognostic approach. 

iv 400 h aging data for training and testing. 

[256] 

gray neural network (gnn) fuel cell output voltage with time for degradation i data sources: experiments 

ii a moving window method for iterative training. 

iii 800 h aging data for studying different moving window sizes & 

prediction capability. 

iv 550 h data at 70 a for predicting degradation. 

[257] 

Self-organizing maps 

(SOMs) 

Fuel cell SoH monitor using the EIS data i An unsupervised method to visually identify the main clusters in 

datasets and correct eventual data mislabeling 

ii 11 data points are used 

[258] 

Sparse autoencoder (SAE) 

and deep neural network 

(DNN) 

Remaining life prediction (RUL) i i.~100k data for validation 

ii Experimental stack data (V & I) per hour. 

iii SAE extracts the prediction features automatically, and DNN realizes the 

RUL prediction. 

[260] 

Echo State Network (ESN) Fuel cell output voltage with time for degradation i Data sources: experiments 

ii 1000 h aging data 

iii Data is smoothed prior to use 

iv 900 h data for training. 

[261] 

Adaptive neuro-fuzzy 

inference system 

Fuel cell output voltage with time for degradation i Data sources: experiments 

ii Hurst coefficient and the wavelet transform were used to filter the 

signals. 

iii The algorithm is divided into two parts, filtering and prognosis 

iv 1700 h data are used for prediction and testing. 

[262] 

Echo State Network (ESN) RUL prognostics. i Data sources: experiments 

ii 1000 h aging data. 

iii iii. Direct and parallel forecasts are used. 

[264] 

Summation-wavelet 

extreme learning machine 

(SW-ELM) 

RUL prognostics. i Data sources: stack experiments 

ii Two sets of data including dynamic and stationary operations with 

1000 h data each. 

iii 168 h data for learning; the rest for testing. 

iv 4 predictive models were tested. 

[266] 
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Fig. 24. Prediction of the PEMFC power signal. The red and blue lines represent 

the prediction and the actual signal, respectively [266] . 
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redict evolution of PEMFC performance and occurrence of a fault. The
cho state network was applied in the model to reduce prediction error.
ilva et al. [262] developed an algorithm based on ANFIS to forecast
he voltage decay due to degradation. The algorithm architecture and
arameter selection were investigated for prediction accuracy and appli-
ability. Input signal data were divided into normal operation and exter-
al perturbations. The latter were unpredictable, and therefore were not
sed to train the ANFIS. It was shown that the ANFIS is well adapted to
ime-series prediction, particularly to degradation. Javed et al. [263] re-
orted that prediction accuracy is determined by the features extracted
rom raw data, and the usefulness of the data is highly dependent on
he variability of phenomena. A new processing method was proposed
y applying trigonometric functions and cumulative transformation to
etter extract and select data. Morando et al. [264] applied a reservoir
omputing tool, the echo state network (ESN), as a prognostics system to
uickly and accurately estimate the RUL. The ESN has the same model-
ng capability as a RNN with high computation efficiency. The accuracy
nd complexity of the network were found to be dependent on the ESN
arameters and design. Jouin et al. [265] built a prognostics framework
hat can accurately estimate the RUL without assumptions on PEMFC be-
aviors. The framework is based on the particle filtering approach with
n accuracy of ± 90 h in a 1000-h lifetime. They also showed that a
odel with both a logarithmic and a linear component is more efficient

han a simple linear model. Ibrahim et al. [266] proposed a discrete
avelet transform (DWT)-based univariate prognostic model to provide
n online prediction without exogenous data. The main advantage is
hat the prediction only used past information from a univariate time
eries and is therefore easy to implement in practice. Fig. 24 shows an
xample of the model prediction of fuel cell power evolution in compar-
son with actual data. Table 14 briefly summarizes the machine learning
tudies in PEM fuel cells in this review. 

. Summary and concluding remarks 

In this review, we summarize the latest status of PEM fuel cells in
ortable, small stationary, and transportation power applications, dis-
uss important fundamentals related to fuel cell materials, design, con-
rol, and durability, and explain machine learning, physics-informed
eep learning, and artificial intelligence (AI) in energy applications and
heir great potentials in advancing PEMFC technology. 

As of December 2019, more than 19,000 commercial FCEVs have
een deployed in the U.S., Japan, South Korea, Europe, and China, and
ver 340 HFRs were available to serve these FCEVs. The Hyundai Nexo
nd Toyota Mirai are two models of FCEVs and account for about 63%
nd 32% of total sales, respectively, in 2019. By 2030, Japan, South
orea, and China plan to deploy ~0.85, 0.8, and 1 million FCEVs, and
uild ~1200, 900, and 1000 HFRs, respectively. In the U.S., more than
0 FVEBs are operated, serving approximately 17 million passengers
y 2017. Most of them have achieved or nearly met the ultimate tar-
et of 25,000 h. In Europe, about 100 FCEB demonstrations have been
ompleted across the continent, with the achievement of 35,000 h by a
allard fuel cell stack. In the portable sector, PEM fuel cell units have
een developed as electric charger and power sources for drones, wear-
bles, and military purposes. The backup power and small stationary
ower generation of PEM fuel cells have been rapidly growing in recent
ears. Co-gen fuel cell units can reach over 80% efficiency for power
nd thermal energy utilization. 

Despite great progress in commercialization, cost and durability are
till the two main barriers to worldwide deployment. It is challenging to
chieve the durability target under the PGM loading target by set by the
OE. Although FCEVs and FCEBs have met the 3000 h real-world driv-

ng test and ultimate target of 25,000 h, respectively, they are still much
ore expensive than conventional fossil-fuel based vehicles. The Toy-

ta Mirai costs 100–200% more than a common gasoline vehicle, even
fter large governmental incentives. The current cost for an FCEV is ap-
roximately $45/kW, almost 50% higher than the ultimate DOE target
$30/kW). A FCEB currently costs approximately 1 million dollars, even
t a production volume of 40. 

Fundamentals are crucial in overcoming major barriers and further
dvancing PEM fuel cell technology for high performance. New PEM
aterials, low PGM-loading, and non-PGM catalysts are important for

educing fuel cell cost. Two-phase flow in porous components such as
Ls, GDLs, and GFCs must be effectively managed to ensure high perfor-
ance and durability. Fuel cell dynamics must be understood in prac-

ice for control strategy and health monitoring. Cold-start capability is
mportant for transportation and portable applications in freezing en-
ironments, requiring physics of ice production and thermal behaviors
nvolving phase change, and their interaction with the electrochemical
eaction. 

Machine learning and artificial intelligence (AI) are powerful tools
or energy and material R&D, and have been growing rapidly in recent
ears. Machine learning and AI have great potential to advance PEMFC
echnology to reduce cost and improve durability/performance, and are
dvantageous in computation efficiency and taking into account the
ffects of physics that are yet unknown or formulated, but contained
n training databases. They have been applied to predict PEMFC per-
ormance, optimize cell design, and selection/optimization of catalyst,
nd showed a great promise in developing fundamental correlations for
wo-phase flow and material properties, analyzing ex-/in-situ images of
EMFC operation, and facilitating advanced model development using
maging data or physics-informed deep learning that encodes flow equa-
ions, capillary pressure correlations, and dimensionless parameters into
he neural networks. They can also be applied to predict fuel cell dynam-
cs, SoH/RUL monitoring, and durability enhancement through analysis
f real-time data and incorporation of dynamic characteristics and key
arameters in neural network learning, and assist in developing con-
rol strategies to meet loading requirements, enable cold start, optimize
peration based on real-time monitoring, and mitigate material degra-
ation. Main physics and fundamentals in PEM fuel cells were summa-
ized for physics-informed deep learning, along with the major public
esources of machine learning databases and tools for materials and
hemistry. 
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