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ABSTRACT

Polymer electrolyte membrane (PEM) fuel cells are electrochemical devices that directly convert the chemical
energy stored in fuel into electrical energy with a practical conversion efficiency as high as 65%. In the past years,
significant progress has been made in PEM fuel cell commercialization. By 2019, there were over 19,000 fuel cell
electric vehicles (FCEV) and 340 hydrogen refueling stations (HRF) in the U.S. (~8,000 and 44, respectively),
Japan (~3,600 and 112, respectively), South Korea (~5,000 and 34, respectively), Europe (~2,500 and 140,
respectively), and China (~110 and 12, respectively). Japan, South Korea, and China plan to build approximately
3,000 HREF stations by 2030. In 2019, Hyundai Nexo and Toyota Mirai accounted for approximately 63% and
32% of the total sales, with a driving range of 380 and 312 miles and a mile per gallon (MPGe) of 65 and 67,
respectively. Fundamentals of PEM fuel cells play a crucial role in the technological advancement to improve
fuel cell performance/durability and reduce cost. Several key aspects for fuel cell design, operational control,
and material development, such as durability, electrocatalyst materials, water and thermal management, dynamic
operation, and cold start, are briefly explained in this work. Machine learning and artificial intelligence (AI) have
received increasing attention in material/energy development. This review also discusses their applications and
potential in the development of fundamental knowledge and correlations, material selection and improvement,
cell design and optimization, system control, power management, and monitoring of operation health for PEM
fuel cells, along with main physics in PEM fuel cells for physics-informed machine learning. The objective of
this review is three fold: (1) to present the most recent status of PEM fuel cell applications in the portable,
stationary, and transportation sectors; (2) to describe the important fundamentals for the further advancement of
fuel cell technology in terms of design and control optimization, cost reduction, and durability improvement; and
(3) to explain machine learning, physics-informed deep learning, and Al methods and describe their significant
potentials in PEM fuel cell research and development (R&D).
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Fig. 1. (a). Fuel cell power shipped in the U.S. department of energy (DOE) report [1]; and (b) PEM fuel cell structure [2].

1. Introduction

Fuel cells, which electrochemically convert the chemical energy
stored in fuels directly to electricity, are widely regarded as next-
generation power devices because of their high efficiency and low emis-
sions. Fuel cells are categorized by their electrolyte membrane into poly-
mer electrolyte membrane (PEM) fuel cells (PEMFCs), solid oxide fuel
cells (SOFCs), molten carbonate fuel cells (MCFCs), and alkaline fuel
cells (AFCs).

Table 1 shows the major features and the production status as of
2019 of each type of fuel cell. Among them, PEM fuel cells operate under
a low temperature, ranging from —40 to 120 °C, and are currently con-
sidered for portable, transportation, and small stationary applications.
They have also received the most research and development (R&D) ef-
fort, as shown in Table 1 and Fig. 1(a).

1.1. PEM fuel cell

PEM fuel cells use polymer electrolyte membranes (notably Nafion®)
to conduct protons and separate gaseous reactants on the anode and
cathode sides. Fig. 1(b) depicts a schematic diagram of the PEM fuel
cell structure. Such fuel cells require expensive electrocatalyst (usually
platinum-based materials) to catalyze the electrochemical reactions un-
der a low temperature. Their noteworthy features include low operating
temperature, high power density, and easy scale-up, making PEM fuel
cells most suitable replacements for the internal combustion engines
(ICEs) of automobiles. In the transportation sector, various PEM fuel
cell electric vehicles (FCEVs) have been developed, including Honda
Clarity, Toyota Mirai, and Hyundai Nexo. The U.S. currently has over
8000 FCEVs and over 40 hydrogen fueling stations. The distributed PEM
fuel cell power system primarily focuses on small-scale power demands

Table 1
Major types of fuel cells [3-5].

(50-250 kW for decentralized use and <10 kW for households). Backup
power solutions for data centers, banks, hospitals, and telecommunica-
tion companies have received increasing attention recently because of
the stringent regulations on ICE-based backup systems. For portables,
PEM fuel cells can provide power to laptops, chargers, wearable electric
units, and military radio/communication devices.

1.2. Current status and technical barriers

Two major barriers to the worldwide deployment of PEM fuel cells
are durability and cost. In state-of-the-art fuel cells, durability decreases
as loading of the costly electrocatalyst is reduced, making it challenging
to meet the durability and cost targets of the U.S. department of energy
(DOE) at the same time. The current price of Toyota Mirai FCEV is ap-
proximately $60,000 even after incentives, which is higher than that
of gasoline vehicles, and a fuel cell electric bus (FCEB) costs approx-
imately $1 M. From the viewpoint of durability, DOE testing showed
that the Toyota Mirai passed the 3000 h real-world driving tests but
failed largely in the DOE accelerated stress test (AST) protocols. The
performance was significantly reduced after 5000 cycles with the thick-
ness of the cathode catalyst layer (CL) decreasing from ~10 to 3 um for
1.0-1.5 V cycle AST [11]. The lifetime target is ultimately 8000 h for
FCEVs, and 25,000 h for FCEBs. From the viewpoint of cost, the cur-
rent status is $50/kW and $45/kW for 100 and 500 thousand per year
product volume, respectively. The ultimate DOE target is $30/kW for
FCEVs and the 2020 target is $600,000 for each FCEB. In the stationary
sector, Ballard commercializes backup power systems with 7000 h of
operating lifetime, which falls short of the 10,000 h objective [12,13].
Moreover, data from various fuel cell developers suggest that equipment
cost is ~6 times higher than the aimed $1000/kW [12,14]. Consider-
ing micro combined heat and power (mCHP) applications, Panasonic’s

PEMFCs AFCs [6] PAFCs [7] MCEFCs [8] SOFCs [9]
Electrolyte Polymeric membrane Potassium hydroxide Phosphoric acid Molten carbonate Ceramics
Charge carrier H* OH- H* C042- 0>
Operating temperature -40-120°C (150-180°C in 50-200°C 150-220°C 600-700°C 500-1000°C
high temp PEMFCs)
Electrical efficiency Up to 65-72% Up to 70% Up to 45% Up to 60% Up to 65%
Primary fuel H,, reformed H,, methanol in H, or cracked H, or reformed H, H,, biogas, or methane H,, biogas, or
direct methanol fuel cells ammonia methane
Primary applications Portable, transportation, and Portable and Stationary Stationary Stationary
small-scale stationary stationary
Shipments in 2019 [10] 934.2 MW 0 MW 106.7 MW 10.2 MW 78.1 MW
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Fig. 2. (a) Relationship of AI, machine learning, and deep learning, and (b) number of US patent applications per year related to Al, machine learning, and deep

learning in a U.S. DOE report [20].

highly successful 700 W units feature 90,000 h of lifetime (higher than
the DOE 2020 target of 60,000 h [15]) and meet the Japanese govern-
ment’s intended price of JPY 800,000 [16,17]. For portables, German
SFC Energy’s direct methanol fuel cell (DMFC) products are warrantied
for up to 4500 h, whereas deployments within the sector incur a cost of
up to 15$/W [18,19]. The ultimate DOE durability and cost targets are
5000 h and 5$/W, respectively [19].

1.3. Role of fundamentals, materials, and machine learning

Although commercial PEMFC systems are now available in various
applications, a few more years is anticipated prior to their worldwide
deployment to reduce cost and improve durability, and after that, the
technology will be further advanced like the ICEs in the past hundreds
of years. Advancements in materials, operational control, and design
are crucially important to cost reduction and durability/performance
enhancement. In operation, multiple interrelated and complex phenom-
ena occur in fuel cell operation, including mass/heat transport, elec-
trochemical reactions, and ionic/electronic conduction, which govern
energy conversion and efficiency. Breakthroughs in material develop-
ment, acquisition of fundamental knowledge, and development of ana-
lytical models and experimental tools are highly needed at the current
stage of fuel cell R&D. For example, non-platinum metal group (non-
PMQG) catalysts, new membrane materials, platinum (Pt) loading reduc-
tion, and high current operation are critical for cost reduction. Advanced
strategies for water/thermal management and system health monitoring
ensure high performance and durability in operation. Machine learn-
ing and artificial intelligence (AI), a powerful tool for data analy-
sis/classification, system control/monitoring, and design/performance
optimization, have received increasing attention in material and energy
development, as shown in Fig. 2, which plots the numbers of patents
related to Al, machine learning, and deep learning in the energy field
in the period of 2000-2017. Machine learning, physics-informed deep
learning, and Al can facilitate the development of fundamental knowl-
edge and correlations, material selection and advancement, fuel cell de-
sign and optimization, system control, power management, and moni-
toring of operation health, showing great potential to advance PEMFC
technology. This review focuses on the discussion of fundamental prin-
ciples, material challenges, and machine learning applications in PEM-
FCs. Although the review attempts to cover most literature on this topic,
there are undoubtedly some that may have been left out.

2. PEM fuel cell technology status

Portable, transportation, and small stationary power generation are
three primary areas for PEMFC applications. The power of portable
fuel cells usually ranges from 5 to 50 W. That of electric passenger
cars, utility vehicles, buses, and heavy-duty trucks ranges from 20 to

250 kW. Stationary PEMFCs are usually targeted for 100 kW to 2 MW
of power for backup or data center power solution. Some small-scale
stationary PEMFCs, e.g. for remote telecommunication and residential
applications, have a power level of approximately 100 W to 1 kW [21].

2.1. Portables

Portable power has a small share within the fuel cell market, and the
number of units shipped has been decreasing in the last decade back to
the levels in 2008, as shown in Fig. 3. During 2012-2014, shipments
of portable fuel cell systems increased more than three folds because
of the introduction of micro fuel cell chargers for consumer electron-
ics [22]. Nevertheless, such sales have become negligible due to the
competitiveness and performance improvement of battery technology,
and most players have exited the consumer electronics fuel cell market.
In 2019, Swedish myFC announced the discontinuity of the company’s
consumer products including its JAQ Hybrid power bank [25]. In 2015,
British Intelligent Energy stopped developing its UPP fuel cell charger to
focus on the integration of fuel cells in smartphones and drones [24,26].

Currently, portable PEMFC applications include small-size off-grid
and backup power, non-automotive auxiliary power units (APUs), and
military applications. The main player in the sector is Germany SFC En-
ergy. In addition to its original DMFC systems up to 500 W, in 2018, the
company entered the hydrogen fuel cell market after signing a develop-
ment partnership and licensing agreement with adKor [18]. SFC Energy
provides off-grid energy systems for the oil and gas industry at remote
locations, backup or uninterruptible supply for industrial equipment,
APUs for special or recreational vehicles, and portable power supply for
defense and security. Danish SerEnergy capitalizes on high temperature
PEMFC technology to deliver compact methanol-powered systems with
a power capacity of up to 5 kW for off-grid and backup power appli-
cations [27]. Using the same concept, German Sigens developed 500 W
units for off-grid utilization [28]. British BOC, a member of Linde Group,
commercialized 175 W fuel cell modules together with H, cylinders for
customers requiring long off-grid operation [10,29].

Portable PEMFCs have also been developed as a promising power
source for military applications. They showed promise in increasing the
flight time of unmanned aerial vehicles (UAV) to approximately 8 h
and reduced the refueling time to a few minutes. Less maintenance and
zero lubricants are required because of the absence of moving parts in
fuel cells. They can be used as wearable power supply devices and can
replace batteries to reduce the carry-on weight for soldiers. Several R&D
efforts were recently summarized by Wang et al. [11].

2.2. Transportation

The transportation sector is the primary application of PEMFCs be-
cause of their zero emission, high efficiency (as high as 65% in practice),



Y. Wang, B. Seo and B. Wang et al.

Portable sector excl. forklifts & unmanned aerial vehicles (UAVs)

— — N N
o w [=] W

Shipments ('000s)

W

L]

(=]

2008 2009 2010 2011
)

C—Shipments ('000 units) ===—=MWs

Table 2

Energy and AI 1 (2020) 100014

Fig. 3. Fuel cell shipment and power generation in the
portable power sector [10,22-24].
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FCEV milestones

FCEV sold by Dec 2019 [30] 2020s 2030 2040
USA [31] 8089 200 K by 2025° 53M" -
South Korea [32-34] 5068 67 K by 2022 ~850K 2.9M
Japan [35] 3611 200 K by 2025 ~800K -
Europe [36] 2485 800 K by 2025° 42M° 21.3M°
China [37,38] 112 50 K by 2025 M -

* Ambitious scenarios by private sector representatives.

and high power density. Major motor companies have been extensively
involved in FCEV development to overcome the major barriers to com-
mercialization, including cost, durability, and cold-start capability.

More than 19,000 FCEVs were sold worldwide by the end of 2019
[30]. Approximately, 7500 units were delivered in 2019 alone (90%
increase with respect to the previous year), and more than half of them
were delivered in South Korea [39,40]. In addition, 86% of the all-time
sales were concentrated in California, South Korea, and Japan because of
the strong policy support in these regions [32,35,41-43]. As of 2019, the
U.S. currently has over 8000 FCEVs and 44 hydrogen refueling stations.
In Europe, ~2500 FCEVs have been deployed. In Asia, there were over
3000 FCEVs in Japan and South Korea by 2019, and they are expected
to be over 200 K and 1.6 M by 2025 and 2040, respectively, according to
the 2020-2040 roadmaps. Although China has only about 112 currently,
its ambitious plan reveals that 50 K and 1 M FCEVs will be deployed by
2025 and 2030, respectively. Table 2 summarizes the numbers of FCEVs
in these major counties, along with future milestones in their hydrogen
roadmaps. Significantly, the South Korean [32], Japanese [35,44], and
Chinese [37] hydrogen roadmaps were released by the government or
governmental agencies, while in the U.S. [31] and Europe [36], they
were created by private sectors. Leveraging on the current momentum
in the fuel cell and hydrogen industry, policy support is necessary to
enable operational scale-up and accelerate the wide deployment of the
technology [45,46].

As of 2020, Hyundai, Toyota, and Honda have launched high-volume
FCEVs. Table 3 summarizes their fuel cell stack and hydrogen tank con-
figurations, driving range, and MPGe. In 2019, ~63% of the total sales
came from Hyundai Nexo, 32% from Toyota Mirai, and less than 5%
from Honda Clarity Fuel Cell [39]. Launched in 2018, Hyundai Nexo
features a more efficient stack, lighter and more compact powertrain,
and 40% more range up to the world’s highest 380 miles (EPA [47])
than its predecessor Tucson FCEV [48]. According to Hyundai’s ‘FCEV
Vision 2030’, the aim is to produce 700,000 fuel cell systems annually
by 2030, including 500,000 for FCEVs [49]. Cumulatively, Toyota Mirai
is the most sold FCEV with over 10,000 units sold since its introduction
in 2014. The adoption of a 3D fine-mesh porous media flow field and
thinner membrane (~10 pm thick) significantly improved the reactant

and water management with respect to the company’s previous 2008
model, leading to higher efficiency and enabling the removal of exter-
nal humidification [50,51]. The first generation FCEV Mirai is equipped
with a 114-kW (153-HP) PEMFC stack with a 3.1-kW/L power density.
In the 2019 Tokyo Motor Show, Toyota unveiled its second generation
Mirai concept, scheduled for launch in 2020, with a 30% increase of
the current 312-mile (EPA [47]) range [52]. From 2020, the automaker
expects to ramp up sales and production capacity ten-fold up to 30,000
per year [53]. Despite its availability on lease since late 2016, the de-
liveries of Honda Clarity Fuel Cell are far behind those of Hyundai and
Toyota [39,54]. Besides, since 2013, Honda and General Motors have
been co-developing their next-generation PEMFC systems and hydrogen
storage technologies [55]. In 2017, both companies established the auto
industry’s first manufacturing joint venture to mass-produce advanced
PEMFC systems starting around 2020 [56].

FCEBs are one of the best early transportation applications for
PEMFC technology. In general, transit buses run at a lower speed and
are subject to less dynamic operation than FCEVs. They operate in con-
gested areas, such as big cities where pollution concerns are more ur-
gent and are centrally located and fueled. Furthermore, buses also per-
mit larger space and better mechanical protection for hydrogen tanks.
In the U.S., more than 30 FVEBs are operated in the state of Califor-
nia, serving approximately 17 million passengers by 2017 [64]. Most of
them have achieved or almost met the ultimate target of 25,000 h. The
capital cost in 2016 was ~$1.8 million per bus, and analysis showed a
cost of ~$1 million each on an order for 40 buses [65]. Europe has been
particularly active in the development, demonstration, and deployment
of FCEBs, leveraging on strong EU support through a series of public-
private projects. By the end of 2019, approximately 100 FCEB demon-
strations were completed across the continent [66]. Significant mile-
stones include the achievement of 35,000 h by a Ballard fuel cell stack
integrated on a Wrightbus in London [10,67], and the ‘Bus of the Year
2019’ award by Van Hool’s FCEB Exqui.City18 [68,69]. Currently, a to-
tal of 12 European bus OEMs are pursuing fuel cell activities, and ~1300
FCEB deployments are planned within the next few years [30,66]. The
largest-scale deployment projects are the Joint Initiatives for hydrogen
Vehicles across Europe (JIVE and JIVE 2) and the H2Bus Europe. The



Y. Wang, B. Seo and B. Wang et al.

Table 3
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Vehicle Model Stack Max Power Fuel Economy MPGe

Stack Power Fuel Pressure Fuel Tank Capacity Range (EPA [47])

(City/Highway/Comb)  Density (MPa) (kg) (Wt%)
Hyundai Nexo [63] 95 kW 65/58/61 3.1 kw/L 70 6.33 (7.18 wt%) 380 miles
Honda FCX Clarity Fuel Cell 103 kW 69/67/68 3.12 kW/L 70 5.46 (6.23 wt%) 366 miles
Toyota FCEV Mirai 114 kW 67/67/67 3.10 kW/L 70 5.0 (5.70 wt%) 312 miles (1224 L

H,/70 MPa)

Hyundai Tucson Fuel Cell 100 kW 49/51/50 1.65 kW/L 70 5.64 (6.43 wt%) 265 miles
Daimler GLC F-CELL Hybrid SUV ~155 kW for car Combined - - - ~430 km (4.4 kg
Plug-in total power output hydrogen H, @700 bar)+51 km

consumption: (Battery)

0.34 kg/100 km
Saic MAXUS FCV80 115 kW - 3.10 kW/L 35 6 312 miles

Table 4
PEM fuel cell electric buses (FCEBs) in Europe and the U.S.
D Fuel Cell System Max Stack Battery H, Storage Range (mile) OEM
Power (kW) Capacity Capacity (kg)
(kwWh)
ACT ZEBA UTC Power 120 40 204 Van Hool [65]
EnerDel/17.4
SL AFCB Ballard 150 A123/11 50 260 ElDorado National [65]
UC Irvine AFCB Ballard 150 A123/11 50 244 ElDorado National [65]
A330 Fuel Cell Ballard 85 24 or 36 38 220-250 Van Hool (Belgium) [71-74]
FCveloCity-HD85

Businova Symbio H2Motiv 30 132 28 190 Safra (France) [75,76]
Streetdeck FCEV Ballard 85 48 30 200-265 with Wrightbus (UK) [77-80]
(double-decker) FCveloCity-HD85 increasing H, storage
H2.City Gold Toyota 60 29-44 37.5 250 CaetanoBus (Portugal) [81,82]
Urbino 12 hydrogen Ballard FCmove-HD 70 30 375 220 Solari (Poland) [83-85]

former aims to deliver almost 300 FCEBs in 22 cities of 10 countries by
the early 2020s, with a maximum price of €650k each [66]. The latter
intends to scale-up production and deploy 1000 FCEBs at commercially
competitive prices, including 600 units in Denmark, Latvia and the UK
by 2023 [70]. Table 4 summarizes FCEBs and their configurations in
Europe and US.

PEMFCs have also been developed for airplane, airship, railway (and
light railway), and marine applications. The technology has advantages
of high energy and power density, which is ideal as airplane power for
the main power plant of the UAV or APU for large aircrafts. Some devel-
opments were also reported or are ongoing to install PEMFCs in boats
and ships to reduce the emissions of CO, and pollutants and the usage
of fossil fuels [11].

2.3. Stationaries

The stationary application generally considers PEM fuel cells as pri-
mary power, backup power, and combined heat and power (CHP). In
2019, the worldwide market for stationary fuel cells was ~2.98 billion
USD, and it is still rapidly growing [86]. The notable manufacturers in-
clude Plug Power, Fuel Cell Energy, UTC Power, and Fuji Electric [87].
As reported by the U.S. DOE, more than 235 MW stationary fuel cell
power supply has been installed with about 8000 backup power units
deployed or on order in the U.S. [88].

For primary power, stationary PEMFCs can not only serve as a sup-
plementary of the grid, but can also act as distributed power sources
when the grid is unavailable. The efficiency of conventional ICE-based
power plants is ~30-40%, whereas that of a PEMFC power plant is up to
65% [11,88]. Additionally, the electricity demand considerably varies
from on- to off-peak hours in cities. PEM fuel cells usually have excellent
dynamic response and flexibility in output power adjustment. Thus, us-
ing PEM fuel cells as a supplementary solution for on-peak hours signif-
icantly improves the efficiency and dynamic characteristics. Moreover,
the grid construction cost is high in the vast territory with a sparse popu-
lation. A considerable amount of generated wind power and hydropower
is not fully utilized because of the lack of large-scale energy storage in-

frastructure. A PEMFC power plant can be co-located with electrolyzers
to efficiently utilize renewable resources for power supply. In Califor-
nia, more than 400 stationary fuel cell systems have been installed since
2001, supported by the Public Utilities Commission’s Self-Generation In-
centive Program, with 135 MW of electric-only and more than 40 MW
of CHP fuel cell systems. The total installed capacity is expected to be
175 MW [89]. Furthermore, PEM fuel cells have also been developed as
emergency backup solutions for core infrastructures that require unin-
terrupted power, such as factories, hospitals, signal towers, and banks.
The DOE target for a PEMFC backup power of 1-10 kW is 15 years and
10,000 h with a mean time between failures of less than 5 years by
2020 [12]. PEM fuel cells provided emergency backup power to signal
towers operating for hundreds of hours in both Bahamas and Northeast
United States after Hurricane Sandy [88]. Additionally, PEM fuel cells
are suitable to provide both power and thermal energy to residences
or offices, which usually require a power level of 200-1000 W [17].
The overall efficiency of a fuel cell CHP system could be up to 80-95%
[88]. In Japan, Panasonic and Toshiba Fuel Cell Power Systems (Toshiba
FCP) began the sales of commercial products of ENEFARM fuel cell CHP
units from 2009 [17]. Nearly 265,000 ENEFARM units were installed as
of 2018 with a power capability of up to 5 kW. Japan plans to deploy
5.3 million of these units by 2030 [90].

2.4. Hydrogen refueling stations

Since December 2019, the U.S. has 44 hydrogen refueling (HRF) sta-
tions, almost all of which are located in the state of California. In Europe,
there were 139 HRF stations in 2019, and ~1500 stations will be avail-
able by 2025 according to their roadmap. In Asia, the governments of
China, Japan, and South Korea are supportive of PEMFC technology and
HRF infrastructure development. Japan already had 112 HRF stations
in 2019 and plans to open 320 and 900 hydrogen retailers by the end of
2025 and 2030, respectively. Although China and South Korea have a
relatively small number of HRF stations at present, their ambitious plans
show that more than 1000 stations will be developed by 2030. Table 5
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Status and plan of hydrogen refueling (HRF) stations of USA, South Korea, Japan, Europe, and China.

HRF stations installed by Dec 2019 [30]

HRF milestones

2020s 2030 2040
USA [31] 44 ~580 by 2025* 5600* -
South Korea [32-34] 34 310 by 2022 1200 1200
Japan [35] 112 320 by 2024 900 -
Europe [36] 139 ~1500 by 2025° ~3700° ~15,000"
China [37,38] 12 300 by 2025 1000 -

* Ambitious scenarios by private sector representatives.

lists the numbers of HRF stations installed till 2019 and milestones in
the HRF roadmap for these counties.

3. Fundamentals and materials

For the hydrogen oxidation reaction (HOR) and oxygen reduction
reaction (ORR) to proceed efficiently, the materials used in fuel cells
must be chosen so that a high beginning of life performance and dura-
bility are ensured. For example, to improve the activation and reduce
transport losses, various issues as discussed earlier need to be addressed,
including durable electrocatalyst and its loading reduction [2], reac-
tant/membrane contamination [91,92], water management [93,94],
and degradation [95,96]. Material advance and improvement are there-
fore important for fuel cell R&D, and fundamentals that establish the
material properties and fuel cell performance under various operation
conditions are highly needed.

3.1. Materials

3.1.1. Membrane

The PEM is located between the anode and cathode CLs. Its main
functions are two-fold: (i) it acts as a separator between the anode and
the cathode reactant gasses and electrons, and (ii) it conducts protons
from the anode to cathode CLs. Therefore, as a separator it must be im-
permeable to gasses (i.e., it should not allow the crossover of hydrogen
and oxygen) and must be electrically insulating. In addition, the mem-
brane material must withstand the harsh operating conditions of PEM
fuel cells, and thus possess high chemical and mechanical stability [97].

Perfluorosulfonic acid (PFSA) is typically used as a PEM material
for PEM fuel cells. The main chain is Teflon-like and highly hydropho-
bic. The sulfonic acid group as an end group of the side chain is highly
hydrophilic; thus, it allows the adsorption of water for proton conduc-
tion. The membrane hydration is thus of importance and must have an
optimal value to ensure that sufficient water is present for proton con-
duction without the risk of flooding the CLs and gas diffusion layers
(GDLs). The length of the side chain is also an important factor in de-
termining the stability and performance of the membrane. For PEMFC
applications, the two types of PFSA membranes usually used are clas-
sified as long side chain (LSC), such as Nafion®, and short side chain
(SSC), e.g. Aquiviun®, membranes. Their main difference is the number
of CF, units and the structure of the side chain [98] (Fig. 4(a)). The
physical structure of a Nafion XL membrane (LSC) is shown in Fig. 4(b).

Though PFSA is the state-of-the-art material used in PEM fuel cells,
there are main drawbacks to this type of membrane that can hinder
durability enhancement and cost reduction, summarized as follows:

1. High proton conductivity occurs under its full hydration state and
thus it is essential to humidify the reactant gasses, which raises cost
and complication of a PEMFC system.

2. Its structure is susceptible to attack by metallic cations and conse-
quent decomposition of the polymer chain. This will reduce its me-
chanical integrity and proton conductivity.

3. Cyclic changes in its hydration during PEMFC operation can result in
membrane failure due to the associated structural swell/shrinking.

This can be mitigated by using reinforcement and appropriate fillers
to improve polymer structure, which increases cost.

In addition, it was reported that the polymer backbone (~CF2-) may
react with hydrogen through:-CF2- + 2H, — —-CH,— + 2HF, causing
membrane degradation [95]. Consequently, for the past years, polymer
research in PEM fuel cells has focused on finding alternative membrane
materials that are not only cost-competitive but also exhibit high dura-
bility and stability over a wide range of operating conditions, partic-
ularly under the extreme conditions of low humidity (e.g. 0%RH) and
high (e.g. >120 °C) and sub-zero temperatures, which have been exten-
sively reviewed in the literature [100,101]. Some alternative solid poly-
mer electrolyte materials offer the advantage of low cost while eliminat-
ing the need for humidification. However, their conductivity and stabil-
ity during the fuel cell lifetime suffer. A summary of major alternative
membrane materials is presented in Table 6. Machine learning and Al
can play an important role in membrane material development. Durable,
cost-effective membranes with high ionic conductivity and minimal hy-
dration requirement are highly desirable for PEM fuel cells. In addition,
proton-conducting polymer membranes are extensively studied in other
fields, such as water electrolysis, chlor-alkali production, metal-ion re-
covery, flow battery, and gas drying/humidification. Machine learning
will be very valuable to analyze the large set of material data available
in the literature, such as ionic conductivity, material structure, function
groups, hybrid configuration, and subfreezing performance, for material
selection and optimization. In fuel cell operation, ion transport, species
cross-over, water diffusion/permeation, and material degradation occur
in the membrane, which can be incorporated into machine learning and
Al through their fundamental mechanisms and equations for control op-
timization, degradation mitigation, and real-time diagnostics.

3.1.2. Catalyst layers

Catalyst layers (CLs) are the component where the electrochemical
reactions occur. The CL material must provide continuous pathways for
various reactant species; primarily, (i) a path for proton transport, (ii)
a pore network for gaseous reactant supply and water removal, and
(iii) a passage for electron conduction between the CL and the current
collector. The CL material is a major factor affecting fuel cell perfor-
mance and durability. Conventional CLs are composed of electrocat-
alyst, carbon support, ionomer, and void space. Optimization of the
CL ink preparation has been the main driver in PEMFC development
[21,102]. This breakthrough highlights the importance of the so-called
triple-phase boundaries of the ionomer, Pt/C, and void space so that all
reactants could access for the reactions. Conventional CLs are prepared
based on the dispersion of a catalyst ink comprising a Pt/C catalyst,
ionomer, and solvent. Ink composition is important for aggregation of
the ionomer and agglomeration of carbon particles, and the dispersion
medium governs the ink’s properties, such as the aggregation dimension
of the catalyst/ionomer particles, viscosity, and rate of solidification,
and ultimately, the electrochemical and transport properties of the CLs
[103-105]. The ionomer not only acts as a binder for the Pt/C particles
but also proton conductor. Imbalance in the ionomer loading increases
the transport or ohmic loss, with a small amount of ionomer reducing



Y. Wang, B. Seo and B. Wang et al.

- (C F2CF)h_ (C FzC F2)k_

|

Short-Side-Chain
(SSC) ionomer

As-received =55 Preheated

L @=1000m

Energy and Al 1 (2020) 100014

- (C FZCF)h_ (C F2C Fz)k

)

CF;

CF ~CF;s

Long-Side-Chain
O (LSC) ionomer

|

CF>
CF,
SOzH

_ Preboiled

e —100nm

Fig. 4. (a) Polymer structures of Hyflon Ion/Dow and Nafion [98], (b) SEM images of Nafion XL membrane in the as-received form (AsR) after being pretreated in
water. Rows from top to bottom show low (x 3000), medium (x 9000), and high (x 43,000) magnification [99].

the proton conductivity and a large amount increasing the transport re-
sistance of gaseous reactants.

In contrast, non-conventional CLs are structured such that one of
the major ingredients in their conventional counterparts is eliminated
[2,102]. Nanostructured thin film (NSTF) CLs from 3 M are the most suc-
cessful non-conventional CL. They consist of whiskers where the cata-
lyst is deposited without ionomer for proton conduction. Over the years,
they have proven to provide a higher activity than conventional CLs, as
seen in Fig. 5. In addition, similar to conventional CLs, annealing can
be used to change the CL structure and ultimately change its activity.

Carbon is the most commonly used support material for catalyst be-
cause of its low cost, chemical stability, high surface area, and affin-
ity for metallic nanoparticles. The surface area of the support varies
depending on its graphitization process and is reported to range from
10 to 2000 rnz/g [107]. Ketjen Black and Vulcan XC-72 are popular
carbons with a surface area of 890 m?/g and 228 m?/g, respectively
[108]. Carbon tends to aggregate, forming carbon particle agglomer-
ates with a bimodal pore size distribution (PSD). This PSD is usually
composed of the primary pores of typically 2-20 nm in size and sec-
ondary pores larger than 20 nm. The primary pores are located between
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Summary of alternative membrane materials to PFSA [100].

Material

Comments

Polystyrene-sulfonic
acid (PSSA)

They are relatively inexpensive compared to
Nafion with a main disadvantage of their
instability. Specifically, styrene sulfonic acid
fragments are lost at high rates, reducing ion
exchange capacity and conductivity. Ternary
benzylic hydrogen and the aromatic ring protons
in the polymer chain form these weak points.

S04H

Strengthening these chains is vital.

Sulfonated polyimide (SPI)-based membranes

X,i_ s _,(.4;’
//'/ . C\\D SOM

n

Their main advantages are the high mechanical
and thermal properties along with durability
against aggressive chemicals and heat because
of their thermostability. Sulfonation of
polyimides has been used to increase proton
conductivity. Their main drawback originates
from their instability under hydrated states due
to hydrolytic, oxidative, and swelling-stress
stability.

Polybenzimidazole (PBI)-based membranes

OO
Ry

Rx

They are tailored for operation at 160-220 °C,
and thus are suitable for PAFCs. The main
challenges are: (i) electrolyte leakage, (ii)
presence of a liquid electrolyte and hence
possible GDL flooding, and (iii) unsuitability
for portable and transport applications. R&D
also uses them in a new class of membranes
with improved matrix for H;PO..

Sulfonated aromatic main-chain polymers I:
Poly(arylene ether)-based SPEs

S-PEEK m¢mbranc

0 g WA g 8 W g TS g T g T

Sulfonated poly(aryl ether keton)-poly(4,4°-
difluorobenzophenone) (SPAEK-DFBP) block
copolymer membrane

They comprise sulfonated aromatic main-chain
polymers and are cost-competitive with high
mechanical strength and chemical/thermal
stability. The SPEAKs and SPEEKs are most
studied. Various combinations are also possible
[102]. The main disadvantage is durability due
to the scission of their main chain. Structural
improvement of their backbone is vital.

Sulfonated aromatic main-chain polymers II:
Polysulfone-, polysulfone-ether-, and
polyphenylsulfone-

based SPEs

Sulfonated polyphenylsulfone

A Sulfonated polysulfone

Sulfonated polyethersulfone

They are sulfonated aromatic main-chain
polymers with main advantages of cost
competitiveness and thermal/chemical stability.
Their mechanical properties depend on chemical
modification processing due to their amorphous
nature. The main drawback is durability,
especially in the presence of oxides. Thus,
durability and stability enhancement is vital.

Sulfobutylateii polyethersulfone
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1 | | __ images of the mesoscale ordering during annealing and for-
i 3 | _g mation of the mesostructured thin film starting from the
T - - a as-deposited Pt-Ni on whiskers (A), annealed at 300 °C (B)
thin fims. 8 s and 400 °C (C). Specific activities of Pt-Ni NSTF as com-
- g pared to those of polycrystalline Pt and Pt-NSTF at 0.9 V
™~
I’o‘. 6 3 (D) [106].
B =
| i il [ ) E .8-
J ‘ [ | L V' < 2
Hn E 4 -
— &"‘i s &
and __8 g
s &
2 ¥
C 3
-
S Pt/C Pt- Pt- PtNi-  PtNi-
R i poly NSTF  NSTF Meso-TF

Current density (mA/cm?,.,)

0.4 0.6 0.8 1.0
Potential (V vs. RHE)

Current density (mA/cm? )

-4

04 0.6 0.8 1.0
Potential (V vs. RHE)

Fig. 6. (A) Steady-state ORR polarization plots (bottom) and H,O, yield plots (top) measured with different PANI-derived catalysts and reference materials: 1,
as-received carbon black (Ketjenblack EC-300 J); 2, heat-treated carbon black; 3, heat-treated PANI-C; 4, PANI-Co-C; 5, PANI-FeCo-C(1); 6: PANI-FeCo-C(2); 7, PANI-
Fe-C; and 8, E-TEK Pt/C (20 pgPt/cm?). Electrolyte: O,-saturated 0.5 M H,SO, [0.1 M HCIO, in an experiment involving Pt catalysts (dashed lines)]; temperature,
25 °C. RRDE experiments were performed at a constant ring potential of 1.2 V versus RHE. RDE/RRDE rotating speed, 900 rpm; non—precious metal catalyst loading,
0.6 mg/cm?. (B) Steady-state ORR polarization plots (bottom) and H, 0, yield plots (top) measured with a PANI-Fe-C catalyst in 0.5 M H,SO, electrolyte as a function
of the heat treatment temperature: 1, 400 °C; 2, 600 °C; 3, 850 °C; 4, 900 °C; 5, 950 °C; and 6, 1000°C [111].

carbon particles in an agglomerate, while the secondary pores are be-
tween agglomerates. Depending on the Pt distribution and utilization
within an agglomerate, the primary pores play a key role in determin-
ing the electrochemical kinetics, while the secondary pores are impor-
tant for reactant transport across a CL. The portion of the primary and
secondary pores is largely determined by the surface area of the car-
bon support [108]. Hence, it has been reported that carbon supports
also determine the optimal ionomer content and the Pt distribution in
CLs [109,110]. Additionally, the anode overpotential is usually consid-
ered negligible in comparison with its cathode counterpart because of
the sluggish ORR. Thus, most work in the literature is focused on cath-
ode CLs. CL optimization is focused on not only enhanced durability
but also reduction of the Pt loading. For this purpose, it is crucial to

determine the optimal combination of the carbon support and catalyst
for loading reduction. An example is highlighted in Fig. 6, where differ-
ent carbons are heat-treated to induce the catalytic activities of PANI-
derived catalysts and to ensure their performance and stability. Rotating
Ring-Disk Electrode (RDE) measurements were conducted to study the
ORR activity of various heat-treated PANI-C catalysts as a function of
temperature.

The durability and stability of CL material are a major subject in
R&D, which is related to multiple factors, mainly including (i) operat-
ing and environmental conditions, (ii) oxidant and fuel impurities, and
(iii) contaminants and corrosion in cell components. For instance, oper-
ation under high voltages (above 1.35 V), which may occur during fuel
cell startup and shut-down, can lead to Pt dissolution [112]. Operation
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further above this voltage will cause degradation of the carbon support,
known as carbon corrosion. In addition, any traces of a contaminant in
the fuel or oxidant feeds can lead to a decrease in fuel cell performance
by poisoning CL materials [113,114]. Some contaminants cover the Pt
catalyst and then reduce the electrochemical surface area (ECSA) avail-
able for the reaction. This catalytic contamination is usually reversible
upon removal of the contaminants. In certain instances, contaminants
such as ammonia will cause irreversible degradation under adequate ex-
posure time and concentration [44]. Further, cell components, such as
CLs and BPs, may contain contaminants, from their manufacturing pro-
cess and/or material used, which eventually leach out and cause poi-
soning of the MEA. This may include membrane poisoning by metallic
cations [91].

Up to date, Pt is the electrocatalyst of choice for the ORR in PEM fuel
cells because of its high activity. However, Pt has a high cost associated
with it and is currently mined in mainly several countries, such as South
Africa and Russia. Furthermore, high Pt loading is required to reach
the target lifetime without major efficiency loss. Using state-of-the-art
methods, Pt catalyst is distributed in a way that does not allow its full
utilization in CLs [115,116]. Alternative catalysts that are either Pt free
or Pt alloys are under research. Two excellent review papers on the topic
are provided by Ref. [117,118]. A summary of some of these catalysts,
their current status, and remaining challenges is provided in Fig. 7.

Machine learning and Al are extremely helpful and highly demand-
ing for CL development providing that CLs have been extensively stud-
ied for not only PEM fuel cells, but also many other systems, such as
electrolyzers and sensors with Pt-catalyst electrodes. The species trans-
port equations, ORR reaction kinetics, two-phase flow, and degrada-
tion mechanisms can be encoded into the neural networks for effec-
tive physics-informed deep learning to understand the impacts of cata-
lyst materials on fuel cell performance/durability and optimize the pore
size, PSD, PTFE loading, ionomer content, and carbon and electrocata-
lyst loading. In the mass production phase, machine learning and AI can
assist the quality control of CL composition in signal processing and el-
ement analysis when integrated with detection techniques such as Laser
Induced Breakdown Spectroscopy (LIBS) [119].

3.1.3. Microporous and gas diffusion layers

Gas diffusion layers (GDL) and microporous layer (MPL), together
called diffusion media (DM), are placed between a bipolar plate (BP) and
the CL. Their main function is to provide mechanical support for MEAs,
a passage for reactant supply and product removal, and a pathway for
electron conduction between CLs and BPs. Both GDL and MPL are porous
materials, with carbon paper being the option for commercial GDLs and
carbon powder for MPLs.

Carbon paper is a carbon-fiber composite with fibers of ~7 pm in
diameter. The fibers are held together by binder, which usually accounts
for 5-15% of the final paper weight [120]. Carbon paper GDLs must be
hydrophobic to improve water removal and avoid electrode flooding.
Polytetrafluoroethylene (PTFE; brand name Teflon) is often added to
carbon paper for hydrophobicity treatment. Additionally, carbon paper
GDLs are anisotropic in their structure, as shown in Fig. 8.

As depicted in Fig. 8(c) and (d), at low loading, PTFE is usually con-
centrated at the surface region and penetrates deeper into the GDL as
its loading increases. Another observation is that the binder structure of
PTFE is changed in that it is no longer smooth but exhibits a web-like
porous shape. A high PTFE loading will block the GDL pores, result-
ing in mass transport limitation. The PTFE loading also affects the PSD
[121], and reduces overall pore volume. For a pore radius <3 um, no
PSD change was observed, implying that PTFE does not penetrate the
pores in this size range. Pores larger than 5 pum were found to be the
most affected with a significant decrease in volume as the PTFE load-
ing increases from 5% to 20%. Hence, it is crucial to balance the GDL
hydrophobicity and pore space for liquid removal and gaseous reactant
supply, respectively.
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To improve the GDL-CL physical contact, a MPL is often introduced
between the two layers. It usually has a pore size between those of
GDLs and CLs and has been reported to enhance fuel cell performance
in some occasions because of the improved water management in the
cathode [122]. Its pores are primarily less than 0.5 pm with a mean
size of 0.320 um [123], while those in GDLs and CLs are mostly around
6-20 pm [121] and less than 0.02 pm [124], respectively. MPLs are
composed of tightly packed carbon black particles (see Fig. 9), bound
together by PTFE, which also makes MPLs hydrophobic. The MPL ink
is usually coated onto the GDL surface during fabrication. Their main
purpose is to provide a smooth, continuous interface between a GDL and
a CL, thereby reducing the interfacial resistance. Other MPL benefits in-
clude (i) reduced overall ohmic loss mainly due to membrane hydration
increase; (ii) electrode flooding mitigation; and (iii) enhancement of the
MEA chemical and mechanical stability [125-134].

Machine learning and Al can be applied to optimize the design of
both GDLs and MPLs, including their pore sizes, PSD, PTFE loading,
permeability, and physical dimensions. The species transport equation,
heat transfer and electric current conductance equations, Darcy’s law,
and two-phase flow model need to be encoded into the neural networks
for effective physics-informed machine learning.

3.1.4. Bipolar plate and gas flow channel

BPs have multiple roles, including electric current collection, heat
removal, gaseous reactant distribution, and water removal via their em-
bedded gas flow channel (GFC) networks, and mechanical support. In
addition to these functions, BP materials need to be corrosion resistant in
the fuel cell environment. In the early stages of fuel cell development,
graphite is a popular BP material because of its high corrosion resis-
tance and electrical conductivity. However, graphite is brittle, making
its mass production difficult, and may subject to leakage owing to its gas
permeability. In commercial PEM fuel cells, carbon composites and met-
als with proper protective coating, including aluminum, stainless steel,
or titanium, have been explored as potential BP materials.

Carbon composites consist of a polymer binder and conductive car-
bon fillers with the former providing mechanical strength and gas im-
permeability and the latter offering electron and heat conductive path-
ways. Increasing the filler loading or combining multiple types of fillers,
such as carbon black, carbon fibers, graphite particles, and carbon nan-
otubes, may enhance the composite conductivity through improving car-
bon cluster connection. However, overloading fillers will reduce BP me-
chanical strength, causing cracks or material failure. The geometry or
morphology and loading of carbon fillers are key factors determining the
composite BP’s properties. Metal BPs are advantageous in multiple as-
pects, such as easy machining, high electric and thermal conductivities,
low gas permeability, and mechanical robustness. A major challenge is
corrosion resistance in the acidic environment of fuel cells. To prevent
corrosion, proper coating needs to be applied to protect the metal sub-
strates. For aluminum, metallic nitrides, carbon, and composite coat-
ings are popular coating materials. For stainless steels, a graphene-Ni
layer, nitrides, and chromium carbide have been investigated as poten-
tial coating materials. Although pure titanium has a higher corrosion
resistance to stainless steel, pure titanium may be subject to the for-
mation of an oxide layer on its surface in fuel cell environment [135].
Gao et al. [135] proposed a carbon/PTFE/TiN composite coating using a
two-step hydrothermal and impregnation process and found that it sig-
nificantly improves the corrosion resistance and surface hydrophobicity.
Toyota Mirai adopted a carbon-coated Ti plate as its cathode and anode
BPs. In coatings, surface defects may occur, leading to pinhole formation
and pathways for corrosives to reach the metal substrate. Multi-layered
coatings offer an engineering solution to resolve this issue. Furthermore,
physical vapor deposition (PVD) techniques may cause surface defects,
such as craters and droplets. Surface defect mitigation is an important
issue in metal BP development [11]. de Oliveira et al. [136] proposed
a trade-off strategy to screen BP materials based on evaluation of the
corresponding Ashby charts. They examined graphite-polymer compos-
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Fig. 7. (a) Development timelines for Pt, Pt alloy/dealloy, core-shell, nonprecious metal, shape-controlled and nanoframe ORR electrocatalysts, (b) benefits and
remaining challenges for each of the primary categories of electrocatalysts [117].
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(b)

(d)

Fig. 8. SEM images of (a) TORAY-TPGH-120 with 0% PTFE and (b) TORAY TPGH-120 with 50% PTFE; (c) cross-section image of TORAY-TPGH-120 with 20%
PTFE; and (d) cross-sectional image of TORAY-TPGH-120 with 50% PTFE—the in-plane direction is defined as the plane perpendicular to the carbon fibers (a and b
showing the xy plane, c and d showing the xz plane—the in-plane direction is perpendicular to the xz plane) [121].

Fig. 9. SEM top-view images of a commercial MPL (Freudenberg) [133].

ites and metals using literature data and recommended multiwall car-
bon nanotubes (MWNT) and carbon fibers as minor fillers in addition to
graphite. They also indicated that pack chromization, nitridation, and
multi-layered PVD films yield the best performance for metallic BPs.
Similar approaches can be developed using machine learning and Al to
screen BPs and coating materials based on the abundant data available
in the literature.

GFCs are embedded in BPs to distribute gaseous reactants and re-
move byproduct water. A desirable GFC design evenly distributes reac-
tants and effectively removes water product with a minimal demand for
pumping power. Several GFC designs have been widely investigated, in-
cluding parallel, serpentine, pin-type, interdigitated, and porous media
flow fields. Additionally, cross-sectional geometry, GDL intrusion, and
surface properties are important factors affecting GFC performance. At
the GDL surface, droplets may emerge and block reactant flow in the

GFC and diffusion to the CL. Thus, proper droplet removal strategy is
needed, which can be developed through analyzing the force balance
and its relevance to the gas velocity, surface roughness and wettabil-
ity, and droplet size [137,138]. Moreover, two-phase flow in GFCs is
crucial to reactant distribution and water removal. To ensure the GDL
surface is free of liquid flow, other channel surfaces should be more hy-
drophilic. Furthermore, bypass flow between two neighboring channels
may occur, driven by their pressure difference, causing reactant leakage
and local reactant starvation. This bypass flow is determined by the GDL
permeability, land dimension, and assembly pressure on BPs. A novel de-
sign of porous medium GFCs was proposed by Wang [139-142], in which
GFCs provide additional functions of heat removal and electron con-
ductance via their solid matrix. This concept enables a flexible GFC de-
sign, including the cross-sectional dimensions, material structure (e.g.,
random and regular structures), novel fabrication (e.g., metal foam or
plate manufacturing), and material selection (e.g., solid matrix and coat-
ing materials). Toyota Mirai FCEVs adopted carbon-coated Ti porous
medium GFCs on the cathode. Other porous media have also been inves-
tigated as potential GFC materials, including carbon/graphite/graphene
foams, metal (aluminum, nickel, and stainless steel) foams, and metal
porous plates, as presented in Table 7. Metal materials usually need a
proper protective coating to survive fuel cell conditions, such as tita-
nium and aluminum. Machine learning and AI are extremely helpful
in the optimization of GFC design, including flow-field arrangement,
cross-sectional shapes, counter/co-flow configuration, and material and
pore networks of porous media GFCs. The flow equations, Darcy’s law,
species transport equation, and heat transfer and electric current flow
equations, need to be encoded into the neural networks for effective
physics-informed deep learning.
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Table 7
Porous media flow field materials for PEM fuel cell [143].
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Porous media Microstructure Features
materials
High porosity (e.g., 95-98% before compression and ~80—
Metaljalloy 95% after compression and PTFE treatment);
oai ; Pore size range (0.230-1.59 mm)
(e.g., Al Nij, ) :

and Cu foams)

Carbon/graphite
foam

Graphene foam

Carbon
felt/cloth

3D Ti fine mesh
(Toyota)

Nt vty e

SHsHISE

3D porous plate

using stainless . % %Qp_
steel 2 N %/\ 4
(Poss470FC) Ty %4@

(Hyundai) -

h SxCasn @

L

Good mechanical strength;
Poor corrosion resistance; thus, coating is required.

Porosity (64-99%, usually cannot be compressed);
Pore size range (0.03—1.27 mm);

Good thermal and electrical conductivity;

Good corrosion resistance,

s Large surface area;

Low density.

High porosity (can be compressed, left: before compression;
right: after compression);

Pore size range (similar to that of metal foam);

Good thermal and electrical conductivity;

Good corrosion resistance;

Good hydrophobicity;

Slightly poor mechanical strength.

Porosity (40-95%);
Pore size range (0.001-0.08 mm);
Good corrosion resistance.

Enhanced convection for gas into porous electrodes;
Good mechanical strength;

Good corrosion resistance;

Good liquid water removal capacity.

Good mechanical strength;
Good corrosion resistance;
Good electrical conductivity.

The technical targets set by the DOE for various fuel cell components
are summarized in Table 8.

3.2. Two-phase flow

Two-phase flow, originated from water production by the ORR, is an
important phenomenon in PEMFCs, where the two phases refer to the
reactant gasses and liquid water. Excessive liquid water will hinder reac-
tant delivery to the reaction sites, thereby increasing the concentration
polarization. This “flooding” issue leads to multiple concerns, including
material degradation, performance reduction, operation stability, and
local reactant starvation that causes material degradation.

In porous components such as CLs, MPLs, and GDLs, liquid water
flow is mainly driven by the capillary pressure (Pc) defined as the pres-
sure difference between the liquid and gas phases. A common Pc cor-
relation is the Leverett J-function, which expresses it as a function of
liquid saturation (s) and material properties, such as porosity (6,), con-
tact angle (6,), surface tension (¢), and permeability (K) [145,146]:

1/2
P,—P =P, =acos(00)(%> J(s), )
where ¢ is the surface tension and the Leverett J-function J(s) is ex-
pressed for hydrophobic and hydrophilic media as follows:

J(s) = {

1.417(1 — 5) — 2.120(1 — 5)* + 1.263(1 — 5)* for 6, < 90°

2
1.417s — 2.120s% + 1.263s3 for 6, > 90° @
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Table 8
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2025 DOE technical targets of PEM fuel cells [144]. *Some statuses are based on specific material performance.

Characteristic Units Status* 2025 Target
MEA and Catalysts
Pt group meta (PGM) total content g kW~ rated 0.125:1.05 (150, 250 kPa) <0.10
Durability with cycling Hours 4100 8000
Performance @ 0.8 V mW cm~2 306 300
Performance @ rated power guideline mW cm~2 890; 1190 (150,250 kPa) 1800
Loss in catalytic (mass) activity % 40 <40% loss of initial
Loss in performance @ 0.8 A cm~2 mV 20 <30
Electrocatalyst support stability % mass activity loss Not tested <40
Loss in performance @ 1.5 A cm~2 mV >500 <30
Mass activity A mgue, @ 900 MVig free 0.6 0.44
PGM-free catalyst activity A cm=2 @900 MVig free A 0.021 0.044
Membranes
P referred maximum operating °C 120 120
temperature
Area specific proton resistance at:
120 °C and water partial pressure of Q cm? 0.054 (40 kPa) 0.02
40 kPa 0.019 (80 kPa)
95 °C and water partial pressure of 25  Q cm? 0.027 (25 kPa) 0.02
kPa (at 80°C 0.02 at 25 kPa, 0.008 at
45 kPa)
30 °C and water partial pressure of 4 Q cm? 0.018 0.03
kPa
-20 °C Q cm? 0.2 0.2
Maximum oxygen crossover mA cm~2 0.6 2
Maximum hydrogen crossover mA cm~2 1.9 2
Minimum electrical resistance Q cm? 1635 1000
Durability
Mechanical Cycles w/<10 sccm crossover 24,000 20,000
Chemical Hours with <5 mA cm~2 crossover or 614 500
<20% loss in OCV
Combined chemical/mechanical Cycles until <5 mA cm~2 crossover or  Not tested 20,000
<20% loss in OCV
Bipolar Plates
Plate weight Kg kw-! <0.4 0.18
Plate H, permeation Std cm3s - ' cm™2 Pa~! @80°C, 3 atm <2 x 106 2 x 1076

Corrosion anode
Corrosion cathode
Electrical conductivity
Flexural strength
Forming elongation

100% relative humidity (RH)
pA cm—2

HA cm—2

S cm!

MPa

%

No active peak <1 and no active peak

<0.1 <1
>100 >100
>34 (carbon plate) >40
20-40 40

Note that the Leverett J-function was originally developed for two-
phase flow in soils. Thus, new P_-s correlations need to be developed for
fibrous GDLs [147,148]. Niu et al. [148] conducted a volume of fluids
(VOF) study, indicating the Leverett J-function provides a good predic-
tion under low pressures of 1000 and 2000 Pa but predict much smaller
liquid saturations under 4000 and 6000 Pa, as shown in Fig. 10. In addi-
tion, superhydrophobicity and mixed wettability [149,150], perforated
structure [151], and heterogeneity [152,153] will significantly impact
liquid displacement in a porous structure. Machine learning and AI will
be helpful in establishing the correlations for general or specific porous
materials under various wettability and heterogeneity using the litera-
ture data obtained from experiment, pore-level modeling, and existing
correlations.

Another major mechanism for liquid water transport is through the
vapor-phase diffusion and phase change, driven by temperature gra-
dients, which is conventionally referred to as heat pipe effect. In this
mechanism, the vapor diffusive flux can be expressed by

Dg”ef (T, Pyve® = D;*ef T, P)VC,,(T) = Dg"ef (T, P)%VT 3)

This flux can be as large as 40% of the water production rate by
the ORR in a fuel cell. In addition, water vapor will diffuse toward
the colder under-land region and will condense locally, thereby deteri-
orating the under-land flooding. A dimensionless parameter, Damkdhler
number (Da), is defined to compare the vapor-phase diffusion with the

ORR production rates:

Rate of water production IHgpr

a = =
Rate of water removal via vapor diffusion o D;v,ef Iacw

“

where Hgp,; is the GDL thickness, F the Faraday constant, I current den-
sity, and ACY the difference between the vapor concentrations in the CL
and GFC. Wang and Chen [155] indicated that a Da of less than 1 en-
sures liquid water under the GFC centerline to be completely vaporized
by the waste heat, leading to a highly humidified GDL region which is
free of liquid water.

Fundamental models, including macroscopic and pore-level models,
have been proposed to investigate two-phase flow and its impacts on fuel
cell performance. The multiphase mixture (M?) formulation [156] is a
macroscopic model that is widely adopted in PEM fuel cells [157-160].
The key idea is to focus on the level of the multiphase mixture and treat
the multiple phases as constituents of a multiphase mixture. The mixture
properties are defined and the governing equations of mixture variables,
such as the mixture density, velocity, and species concentrations, are
derived from the conservation laws. In addition, two-fluid models have
been proposed as an alternative macroscopic approach, which resolves
a separate liquid flow equation [139,161-164]. A phase change rate is
added to each water equation of the two phases, which is determined by
the interfacial area between the two phases, vapor concentration differ-
ence, and mass transfer coefficient [161,163]. In porous components of
PEMFCs, this phase change rate can be assumed to be adequately rapid;
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Fig. 10. Comparison of P -s curves obtained from VOF simulations [148] (both
constant porosity and varying porosity) with experiments [154] and standard
Leverett capillary pressure function model. Operating conditions: fiber contact
angle 6 = 109°, 20 wt% PTFE in GDL. Parameters for the Leverett capillary
pressure function model: Permeability K = 4.24 x 10~12 m?, porosity € = 0.79,
contact angle = 109°

thus, local equilibrium applies [162]. The macroscopic method is suit-
able for direct coupling with other physical and electrochemical reaction
kinetics to predict the fuel cell performance. To investigate the impacts
of pore structure, the pore network model (PNM), lattice Boltzmann
model (LBM), and VOFs have been employed to study two-phase flow
by considering the detailed microstructures of GDLs and MPLs, recon-
structed by either stochastic models [148,165,166] or X-ray computed
tomography (CT) [154,167,168]. The PNM method involves mapping
the complex pore network onto a regular or irregular lattice with local
pore characteristics including size, wettability, and throat connection.
A major advantage of the PNM is that it effectively incorporates impor-
tant local microscopic properties of a porous medium and can analyze
a sample much larger than the other two. LBM is a powerful technique
for investigating transport and fluid flows involving interfacial dynamics
and complex geometries. It considers a flow to be composed of a collec-
tion of pseudo-particles residing on the nodes of a lattice structure and
uses distribution functions to represent the probability of finding a fluid
particle [169]. LBMs are advantageous in eliminating the explicit inter-
face tracking because of their inherent ability to incorporate particle in-
teractions to yield phase segregation. VOF methods track the interface
between two immiscible fluids by resolving an equation of the phase
volume fraction y: the cells fully occupied by liquid water and gas are
marked as y = 1 and 0, respectively, while those with a phase fraction
y between 0 and 1 have an gas-water interface. The interfacial force is
converted to a source term in the momentum equation of the cells at
the interface. These pore-level methods are extremely useful to study
micro/mesoscopic flow physics, impacts of material heterogeneity, and
flow-microstructure correlations. However, they are usually computa-
tionally intense and difficult to couple with other physics for full-cell
simulation [11].

To probe the in-situ liquid water content in PEM fuel cells, high-
resolution neutron and X-ray radiographies have been employed in re-
cent years. Neutron radiography is a promising method to detect lig-
uid water because of the extreme sensitivity of neutron beams to water
relative to other fuel cell materials. Recently, Mishler et al. [170] em-
ployed in-situ neutron radiography to quantify the liquid distribution
from the inlet to outlet under various RH values, PTFE loadings in GDLs
and MPLs, flow fields, and flow configurations, as shown in Fig. 11. They
showed that a high water content is present at low current density un-
der constant stoichiometry and liquid water emerges downstream at low
RH and rapidly increases after the onset. Markétter et al. [171] studied
3D water distribution in PEM fuel cells using a quasi in-situ tomogra-
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phy technique and analyzed water distribution after switch-off. They
demonstrated that the technique enables the study of water content
in individual flow fields of three-fold stacks. X-ray CT resolves the in-
ternal structure and inhomogeneity of a sample using an X-ray beam
which is attenuated as it goes through the sample [172]. Fliickiger et al.
[154] employed synchrotron-based X-ray CT to probe the 3D distribu-
tion of liquid water in Toray carbon paper GDLs of various PTFE load-
ings. A resolution of 1.48 uym was employed to distinguish the fibers
and most pores in GDLs. They also analyzed liquid water distribution
from 1D to 3D and the relationship between the capillary pressure and
water saturation. Zenyuk et al. [167] evaluated the porosity, tortuosity,
and PSD of a large set of commercially available GDLs under varying
compression. They observed bimodal PSDs for most of the GDLs, which
approach unimodal distributions under high compression, and also indi-
cated that a domain of 1 x 1 mm in-plane and full thickness in through-
plane directions accurately represents GDL properties. Fishman et al.
[168] studied the spatially varying porosity in GDLs, which was input
to a PEMFC model to study its impact on liquid water distribution [153].
Ge et al. [173] observed liquid water breakthrough events in crack-free
MPLs using in-situ synchrotron X-ray radiography. They also measured
water thicknesses, which were used as input for 1D model analysis.

The two-phase flow images and results can be analyzed using ma-
chine learning and Al, as proposed by Raissi et al. [174] for general fluid
problems. They developed hidden fluid mechanics (HFM), a physics-
informed deep-learning framework, to encode the Navier-Stokes equa-
tions into neural networks. Fig. 12 displays the flow contours over a lig-
uid droplet in a GFC and fluid flows predicted by HFM machine learning.
In addition, AI technology can help improve the current 3D two-phase
models of PEM fuel cells via machine learning of visualization data and
VOF/LBM simulation results. The mechanisms of two-phase flow and as-
sociated dimensionless parameters can be input for a physics-informed
deep-learning framework to encode the flow equations, droplet dynam-
ics, and capillary action into the neural networks.

3.3. Dynamic operation

Dynamic operation is frequently encountered in applications of
portables and FCEVs. For example, startup operation requires a PEM
fuel cell to operate and increase its temperature from room to operat-
ing temperature (usually ~80 °C) within minutes, during which both the
thermal and water conditions will greatly change [94,176]. In addition,
power loss has been observed during transience due to temporary de-
hydration of the anode [177]. The reaction rate or current density may
undergo undershoot due to delays in oxygen supply to the cathode CL
[178].

In PEM fuel cells, dynamic operation is affected by various multi-
timescale processes, including charging/discharging of the electrochem-
ical double-layer at the reaction interface (with a time constant of
Ty = 5CL2aC(1 /x +1/0)), gaseous reactant diffusion in GDLs, MPLs,
and CLs (e.g. 7 = 6gpr.> /Dgf /), membrane water dynamics including
diffusion, electroosmosis drag, and storage (z,, = 2 ‘Z"vy/ #) [178,179],
phase change [180,181], and liquid drainage in GFCs [182,183]. In
terms of timescale, the former two take place fairly fast at a timescale
of less than 0.1 s. Water dynamics in the Nafion® membrane varies
greatly in timescale ranged from 0 to 100 s. The time constants of phase
change and liquid drainage are dependent on the specific process. These
time constants characterize the response of each physical process and
together shape the multi-timescale characteristics of PEMFC systems.
Fundamental analysis of the time constants is also important to explain
fuel cell signals observed in practice and reduce noises and develop ma-
chine learning schemes to predict dynamic behaviors and optimize con-
trol strategy.

One of the most complex phenomena in PEM fuel cells is transient
operation involving non-isothermal two-phase flow and hence the heat
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release/absorption during water condensation/evaporation Sg,:

S g = hygrits, and mfg=p,§+v- (pytiy) Q)
where hg,is the latent heat of vapor-liquid phase change and s/, is the
phase change rate. A practical operation is the dry gas purge technique
to remove excess liquid water for electrode flooding mitigation. In this
operation, excess water in GDLs and the membrane will be vaporized
by dry reactants. Wang and Wang [181] elucidated four de-wetting pro-
cesses and corresponding output voltage responses in the ohmic polar-
ization regime. They delineated the GDL de-wetting by two through-
and in-plane processes, as shown in Fig. 13(a) and mathematically de-
rived the evolution of the vaporization fronts. It was shown that these
two elementary processes follow the same equation after normalization.
Schneider et al. [183] conducted I-distribution measurements and in-
plane neutron radiography in voltage step experiments to investigate
the local flooding and cell performance, as shown in Fig. 13(b). They
indicated that oxygen depletion leads to a strong performance loss un-
der the ribs before the onset of notable liquid water accumulation. Their
results also indicated a timescale of 10-100 s for water buildup in the
fuel cell, consistent with the time constant analysis. Cho et al. [184,185]
investigated the effects of MPL and GDL design on PEMFC transient re-
sponses. Their results showed that the transient response is determined
by the capillary pressure gradient through GDLs. The trade-off relation
for PEMFC performance under low and high RHs is mitigated by design-
ing a reverse capillary pressure gradient in MPLs. As to machine learn-
ing, dynamic operation of PEMFCs and real-time monitoring will gener-
ate a large amount of data, which is suitable for machine learning and
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Fig. 11. (above) Water thickness and perfor-
mance of a PEM fuel cell with a serpentine-flow
field at 50% inlet RH and the corresponding
colored neutron images [170]; (below) sepa-
rated water distribution for each single cell in
a three-cell stack [171].

Counter-

(2]
~

0Alcm?

o
=
°
<
<
ol

i
il

0.8 Alcm?

1.2 Alcm?

£
L
<C
©
e

cell 3

Al to design proper control strategies to achieve load demand and quick
startup, optimize efficiency and performance, and mitigate degradation.
The physics of two-phase transient, membrane hydration/dehydration,
time constants, transport dynamics, and electrochemical double-layer
behaviors can be encoded to the neural networks for effective deep
learning.

3.4. Cold start

PEM fuel cells must be able to survive and startup from subfreezing
temperatures, also called cold start, for the FCEV application [186-188].
In freezing environments, water product has a tendency to freeze in
the cathode CL, making it difficult to remove and thus creating mass
transport limitation which may eventually end the ability for opera-
tion. In practice, the capability of unassisted cold-start is determined
by two competing processes governed by the fuel cell’s water/heat co-
production, namely ice production to occupy the cathode CL pores (with
a time constant 7, = 2Focr (Pmtn1d4=40) | 6CAL4‘;{” )) and PEMFC temper-

T (42 EW
ature increase to overcome 0 °C (zy | = %(273.15 —T,)). The

. . T . . .
ratio of the two time constants, f, = TT—'I, then provides a basic crite-

rion to evaluate the cold-start capabilitﬂj,e which are determined by the
PEMFC design and operation condition [189]. In general, a large CL
thickness (6. ), ionomer fraction (g,,), porosity (e¢;), or small BP thick-
ness (6zp) and thermal capacity (pgpCppp) help cold-start capability. In
addition, supercooled water under subfreezing conditions was observed
to flow to GDL and GFC, which will benefit cold-start capability. Ko et al.
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Fig. 12. (I) Velocity contours of flow over a liquid droplet at the GDL surface in
a GFC at an inlet velocity of 3.0 m/s [137,138,175] [RR16]; (II) 2D channel flow
over an obstacle using machine learning: the outputs from the regressed velocity
u and v and pressure p fields shown on the right column. Reference velocity and
pressure fields are plotted for comparison on the left column [174]. Note that
the flow directions are opposite in (I) and (II).

[190] proposed using part of the cathode MPL for the ORR to improve
cold-start capability.

In cold start, ice formation may vary spatially in PEMFCs, even across
a thin CL [178,191-193]. Analysis of the non-uniformity factor £ of the
reaction indicated that the ORR rate considerably varies in a CL from

d (t=14.75s)
075 60
1 2 3 4 E B
07 —s0 ¢
. .
£ 065 Ly
§ 4 2
s £
3 os : e
S h? 9= 2
P — 1~
0.55 |- alets 15 8
10
05—t =t 5

10
Time (s)

0.239
0.222
0.205
0.188
0.171
0.154
0.137
0.119
0.102
0.085
0.068
0.051
0.034
0.017
0.000

Energy and Al 1 (2020) 100014

the membrane to GDL sides under subfreezing temperature because of
the small ionic conductivity of membranes, as given by the following
correlation for —30-0 °C:

1

5, = (0.018624—0.02854) exp [4029(ﬁ - —)] for A <7.22

Q]

Q
|

= 0(A=7.22) for A>7.22

For a water content A >7.22, part of the water in the ionomer phase
freezes and thus makes little contribution to the ionic conductivity. In
practice or CL design, the number of coulombs of charge Q, transferred
before the output voltage drops to 0.0 V was introduced as a measure of
cold-start capability [105,188]. CL composition, cold-start temperature,
membrane hydration, and CL thickness all affect this parameter.

At the electrocatalyst surface, ice formation may follow two conse-
quent morphologies—initial isolated ice nucleates and then film forma-
tion, as depicted by Fig. 14. The former imposes a much less impact
on the catalyst activity than the latter. In addition, two major mecha-
nisms are proposed for the effects of ice on the ORR activities — cata-
lyst surface coverage and oxygen diffusion resistance [189,194,195].
Furthermore, it has been proposed that ice formation in CLs is fun-
damentally similar to LiOx deposit in lithium-air batteries [196,197]
in terms of impacts on both surface coverage and oxygen diffusion on
the ORR reaction. Two regimes are defined in both fuel cell [198] and
battery [199,200], based on the dominant mechanism of voltage loss.
Fig. 14 shows the evolutions of PEMFC voltages and HFR under subfreez-
ing operation. The initial sharp drops are the starting points which im-
pose the electric load, and the output voltage decreases initially, which
is dominated by the catalyst surface coverage by ice product, followed
by a fast drop which is dominated by oxygen blockage due to ice forma-
tion in pores. Du et al. [201] indicated that under the maximum power
mode, the cold-start current density is at high levels and the perfor-
mance improvement caused by membrane hydration and temperature
increment may not be observable. Therefore, before the melting point,
the performance drops continuously. Another critical issue related to
cold start is CL degradation including the electrochemical surface area
(ECSA) loss. GDLs may lose their hydrophobicity and break the fiber

b)

—water accumulation [% vol tot]

Fig. 13. (a) GDL de-wetting in a PEM fuel cell: (above) evolution of liquid saturation distribution; (below) responses of output cell voltage and membrane ionic
resistance [181]; (b) characteristic positions of the cathode flow field used for the evaluation of (i, ii) local water accumulation and (iii) local current density [183].
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Fig. 14. (a) Evolution of PEMFC output voltage and
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(d) the ice surface coverage factor 7, to describe the
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linkage during freeze/thaw cycles [202]. Similarly, machine learning
can be applied to predict ice formation, ice volume content, and temper-
ature status during cold start by encoding the ORR kinetics, ice morphol-
ogy and impacts at the reaction surface, ionic conductivity at freezing
temperature, and time constants to the neural networks. The physics-
informed deep learning will facilitate the development of proper con-
trol strategies, including external heating, for successful degradation-
free cold-starts from various complex environments in practice.

3.5. Durability

Further development of PEM fuel cells requires not only cost reduc-
tion, but also durability improvement. Durability is usually measured
in terms of the voltage loss per hour under a fixed current, which is
directly attributed to fuel cell material degradation. It is usually asso-
ciated with the electrochemical, mechanical, and chemical stability of
its components, specifically, the MEAs. The electrochemical/chemical
degradation is mainly associated with catalyst dissolution or ripening,
carbon oxidation, and attack by radicals or ionic species; mechanical
degradation results from a mechanical stressor, such as cyclic compres-
sion, material expansion, or membrane crack formation. ECSA loss is
frequently used to measure the degradation of electrocatalyst activity
caused by catalyst ripening/instability and carbon support corrosion
[112]. PEMFC degradation often occurs over a long period of time and
is therefore expensive to investigate experimentally. ASTs are usually
defined, following DOE protocols, to investigate material durability in
a relatively short period of time [203]. PEMFC durability has been re-
viewed extensively in the literature [95,204,205].

For membranes, chemical degradation is often due to attacks by rad-
icals or ionic species; mechanical failure originates from changes in
the membrane structure, such as pinhole formation and crystallinity
change. Cyclic hydration/dehydration and compression of a fuel cell
over its lifetime are the main causes of membranes losing their struc-
tural integrity. Pinhole formation, due to cyclic membrane shrinkage
and swelling, causes crossover of reactant gasses. Degradation due to
chemical stresses may reduce proton conductivity or membrane thick-
ness, which promotes crossover of reactant gasses. Chemical degrada-
tion is often caused by formation of attacking species that damage the
membrane structure. Carboxylic acid and other H-containing end groups
can form during membrane polymerization or as a result of a chemical
reaction, and are usually vulnerable to attack [206,207]. Hence, degra-
dation can occur due to free radical attack on the reactive end groups
[208,209]. The attack eventually leads to membrane unzipping and con-
ductivity loss. In addition, presence of cation impurities may reduce
proton conductivity because the sulfonic sites have a higher affinity to
foreign cations than H* [210]. These ions catalyze hydrogen peroxide
following the reactions in Egs. (7)-(10) to form different types of radicals
[211-213].

Hy0, + M** > MC*D 4t HO - +OH™ ©)

c o
;0.0.0 ‘ Pt-Particle
. . . O Pt-Atom
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Fig. 15. Pt degradation mechanisms: (a) Pt oxidation and PtO surface cover-
age, (b) Place exchange between Pt lattice and adsorbed O atoms, (c) Oxide
reduction and cathodic dissolution of exchanged Pt, (d) Carbon corrosion, (e)
Electrochemical Ostwald ripening, (f) Pt** ion dissolution into the membrane
[112].

OH - +H,0, - H,0 + HOO- Q)
M@ 4 H,0, - M** + HOO - +H* )
H,0, — heat +2HO- (10)

The effect of single cations on degradation from high to low is: Fe
> Cu > Cr > Al, with iron having the highest catalytic effect on radical
formation [211, 212,214]. This type of degradation is often investigated
ex-situ by the Fenton test [212,215] or peroxide vapor test [97].

Electrochemical degradation is mainly governed by ECSA loss due to
electrocatalyst and/or carbon support degradation. Electrocatalyst mor-
phology changes are the main driver for this kind of degradation, and
may be associated with dynamic operation, for example, the cathode
potential cycles between 0.6 V and 0.95 V or rises temporarily above
1.35 V during startup and shutdown [204]. Under such conditions, Pt
becomes electrochemically unstable and may be subject to dissolution.
As the potential voltage increases, Pt>* ions dissolve from the cathode
CL into the electrolyte. They can diffuse into the membrane because of
the increasing concentration gradient, preventing re-deposition in the
CL. A high potential voltage may lead to carbon support corrosion. In
addition, Pt oxidation may occur, as shown in Fig. 15 and Egs. (11)-(13),
which list a few main Pt degradation mechanisms.

Pt o Pt 4207 ¢/

eq.a.Diss

=1.19v (11)

Pt+ H,0 o P10 +2H* +2¢” ¢;§f0x =0.98V (12)
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Fig. 16. (a) Steady-state concentration of dissolved Pt as a function of potential for Pt nanoparticles (Pt/C), (b) Pt dissolution profiles: time and potential-resolved
dissolution profiles of 3 nm Pt catalyst (experimental conditions: 0.1 M HCIO,, potential window: 0.05 to different UPL (0.9 V-1.6 V), scan rate: 5 mV/s), (c) Pt
dissolution for cathodic and anodic portions of potential cycle as a function of cathodic scan rate (potential window: 0.05 V-1.6 V) [217].

PtO+2H" < P** + H,0 (13)

The ECSA loss due to Pt dissolution is mainly associated with a PSD
change of electrocatalyst particles, which occurs via four main mecha-
nisms: (i) Pt grain migration on the carbon support, (ii) Pt dissolution
and re-deposit on larger particles (Ostwald ripening), (iii) Pt dissolution
and migration into the membrane, and (iv) detachment of Pt particles
due to carbon corrosion [206—-216].

Another mechanism of Pt dissolution is place exchange [218], as
shown in Fig. 15(b). During the anodic Pt dissolution in Eq. (11), an
oxide layer forms on the catalyst, which reduces the Pt dissolution rate.
A further increase in the voltage potential or holding the potential con-
stant for a sufficient period of time subjects the adsorbed oxygen atoms
to place exchange from the surface to sub-surface positions. The place
exchange exposes the Pt atoms and permits the absorption of new ox-
ides. In the place exchange process, oxides penetrate the Pt lattice [218].
Thus, subsequent potential sweeps not only reduce the formed oxides,
but also lead to the cathodic dissolution of the exchanged Pt. The place
exchange mechanism is described in Eqgs. (14) and (15).

PtO & O — Pt (14)

O—Pt+2H* & H,0 + Pi** 15)

Fig. 16 shows the dissolved Pt concentration and rate as a function
of the potential and cathodic scan rate. In the event of jump to a high
potential, such as in startup/shutdown operation, carbon corrosion may
occur, leading to losses of the electrical conductivity and supported Pt
catalyst [219]. The dissolution mechanism follows Eq. (16) [107],

C +2H,0 - CO, +4H" +4e™ ¢

e = 0207V (16)

Pt dissolution and carbon support corrosion will cause changes in the
CL microstructure and thickness. Fig. 17 shows SEM images of the CLs
in the Mirai FCV after AST testing, indicative of a significant decrease
in the CL thickness after the carbon support AST testing (c).

4. Machine learning in PEMFC development
4.1. Machine learning overview

Machine learning, an important area in artificial intelligence (AI),
is a scientific discipline involving algorithms that learn from data. The

learning process occurs as the program forms a pattern from existing
data that is then valid for new data. Machine learning has been ap-
plied to promote new technologies, such as image recognition, natural
language processing, and autopiloting, and is used to reexamine tradi-
tional disciplines for revolutionary changes. According to learning style,
machine learning algorithms can be generally classified into three types:
supervised learning, unsupervised learning, and reinforcement learning,
as shown in Table 9. Owing to its accuracy and efficiency, supervised
learning is commonly used in energy-related fields [221-224]. Table 10
lists popular supervised learning algorithms and their characteristics.
Unsupervised learning algorithms, such as principal component analy-
sis (PCA), singular value decomposition (SVD), and k-means clustering,
are also used in energy and material studies.

Among many machine learning methods, the rapid development of
deep learning in recent years has pushed it to the forefront of the field
of AL Deep learning is the ANN with deep structures or multi-hidden
layers [229-232]. It can achieve good performance with the support of
big data and complex physics, and has a much simpler mathematical
form than many traditional machine learning algorithms. The relation-
ship between AI, machine learning, and deep learning is shown in Fig. 2,
along with the number of US patent applications per year [20]. We can
expect that deep learning, such as physics-informed learning, will be-
come the most important path to Al. However, deep learning relies on
big data, and thus traditional machine learning still have strong appli-
cations, especially for interdisciplinary studies, and can solve problems
with reasonable amounts of data. Many open-source machine learning
frameworks have been developed and made available to the general
public, including Scikit-Learn, Caffe2, H20, PyTorch (for neural net-
works), TensorFlow (for neural networks), and Keras (for neural net-
works).

4.2. Machine learning for performance prediction

PEMFC performance is characterized by the polarization curve, also
called the I-V curve, which is determined by a number of factors includ-
ing fuel cell dimensions, material properties, operation conditions, and
electrochemical/physical processes [233-236]. Various physical mod-
els and experimental methods have been proposed to predict or di-
rectly measure the I-V curve, which are reviewed by many other works
[158,160,202,237]. As an alternative approach, machine learning is ca-
pable of establishing the relationship between inputs and output per-
formance through proper training of existing data, as shown in Fig. 18.
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(a)
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(b) (@

After 300 h of driving
+ 30,000 support ASTs

Fig. 17. SEM cross-section images of cells from a Toyota Mirai after (a) 300 h of driving, (b) 300 h of driving + 30,000 catalyst ASTs, and (c) 300 h of driving + 30,000

support ASTs [220].

Table 9

Characteristics and typical tasks of supervised learning, unsupervised learning, and reinforcement learning.

Characteristics Typical tasks
Supervised Dataset is labeled with input and output as ‘feature’ and ‘label’. Regression: The predictive output is a continuous value.
learning Its algorithms generally aim to train the mapping between input and output. Classification: The predictive output is discrete.

The obtained pattern can predict the “label” of new data from the “feature”.

Dataset is not labeled. Clustering: Samples of similar features are grouped to form
Unsupervised Its algorithms are used to address problems impossible to manually label clusters.
learning data due to lack of prior knowledge or cost. Dimensionality reduction: Core features are collected and

redundant information is reduced.

It trains an agent by reward or punishment for a state change and Q-learning: It is a "model-free" algorithm, and can handle
Reinforcement interaction with the environment, allowing the agent to decide the best next problems with stochastic transitions and rewards without
learning action to maximize the reward. requiring adaptations.

Table 10

Popular supervised learning algorithms and characteristics [225-228].

Algorithms Characteristics

Linear regression

It fits a linear model based on ordinary least squares.

It is the common benchmark algorithm to evaluate the prediction performance of other regression algorithms.

k-nearest neighbor (KNN)
Logistic regression

It is a simple algorithm that classifies a new point by a majority vote of its k nearest neighbors in the available dataset.
It is a linear model for classification rather than regression, especially binary classification.

A logistic function is used to calculate the probability of a single trail.

Decision tree

It can learn simple decision rules from data features to predict targets.

It can solve both regression and classification problems.

Naive Bayes
Support vector machine (SVM)

It is based on Bayes’ theorem with the assumption of conditional independence between the features.
It is based on the Vapnik-Chervonenkis dimension and structural risk minimization in statistical theory.

It aims to construct the hyperplane in a high-dimensional space to classify the samples.
It can solve regression problems, usually known as support vector regression.

Gaussian process
Artificial neural network (ANN)

A generic supervised learning algorithm that can solve both regression and classification problems.
It is based on modern neuroscience to process information by simulating the neural network processing in organic brains.

Its structure is multi-layer perceptron, consisting of a large number of connected neurons.

Mehrpooya et al. [233] experimentally constructed a database of PEMFC
performance under various inlet humidity, temperature, and oxygen and
hydrogen flow rates. A two-hidden-layer ANN was then trained using the
database to predict the performance under new conditions. Total 460
points are contained in the database with 400 for training and 60 for
testing, and R2 of 0.982 (for the training) and 0.9723 (for the test) was
achieved in their study. Han and Chung [234] developed data-driven
models using ANN and SVM to predict fuel cell performance and com-
pare their predictions, as shown in Fig. 19. Both models showed accept-
able fitting with R? > 0.98, with the ANN performing better based on
their database. Kheirandish et al. [235, 236,238] compared ANN, SVM,
and Hebbian learning algorithms using their database of the stack volt-
age and efficiency. They showed that all outperformed the linear regres-
sion with the SVM better than ANN. For regression tasks using a small
database in a range of 100 s to 1000s data points, the ANN and SVM

are the most common algorithms for data-driven models, and generally
show acceptable prediction for studying fuel cell performance.

In addition to steady-state performance, Chavez-Ramirez et al.
[239] investigated the dynamics of PEM fuel cell using a two-hidden-
layer ANN with experimental database. Bicer et al. [240] generated a
database from the Matlab simulation of a physics-based model to train
their two-hidden-layer ANN to predict fuel cell dynamics. Although pre-
dicting dynamic performance under various conditions, they ignored the
time-series characteristics of the dynamic data with the inputs including
only operating conditions without time. Thus, they only predicted the
relationship between performance and operating conditions at a specific
time, and no dynamic behaviors were analyzed. Using time-series data
and proper algorithms for machine learning is still highly desirable for
predicting/analyzing PEMFC dynamics and developing control strate-
gies.
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Fig. 18. ANN structure between inputs (operating conditions, including anode
and cathode relative humidity (RH), temperature, current, and pressure, as ex-
amples) and output (fuel cell voltage).

Unlike physical models, the mapping between inputs and outputs
constructed by machine learning models does not follow an actual physi-
cal process; thus, the machine learning approach is also called the black-
box model. Machine learning has unique advantages in PEMFC model-
ing, which requires no prior knowledge, especially of the complex cou-
pled transport and electrochemical processes occurring in PEMFC oper-
ation. This significantly reduces the level of modeling difficulty and also
makes it possible to take into account any processes in which the phys-
ical mechanisms are not yet known or formulated. The machine learn-
ing method is also advantageous in terms of computational efficiency
in the implementation process after proper training. This characteristic
makes machine learning potentially extremely important in the practical
PEMFC applications which usually involve a large-size multiple-cell sys-
tem, dynamic variation, and long-term operation. For a complex physi-
cal model that takes multi-physics into account, the computational and
time costs are usually too high; a simplified physical model lacks of high
prediction accuracy. For even a small-scale stack of 5-10 cells, physics-
model-based 3D simulation usually requires 10-100 million gridpoints
and takes days or weeks for predicting one case of steady-state opera-
tion [158,160,241]. In this regard, machine learning could greatly help
to broaden the application of complex physical models by leveraging
on prediction accuracy and computational efficiency. Using the simu-
lation data from complex physical models to train a machine learning
model is a popular approach, usually referred to as surrogate model-
ing. A surrogate model can replace the complex physical model with
similar prediction accuracy but higher computational efficiency. Wang
et al. [242] developed a 3D fuel cell model with a CL agglomerate sub-
model to construct a database of the PEMFC performance with various
CL compositions. A data-driven surrogate model based on the SVM was
then trained using the database, which exhibited comparable prediction
capability to the original physical model with several-order higher com-
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putational efficiency. It only took a second to predict an I-V curve using
the surrogate model versus hundreds of processor-hours using the 3D
physics-based model. Owing to its computational efficiency of the surro-
gate model, the surrogate model, coupled with a generic algorithm (GA),
is suitable for CL composition optimization. Similarly, Khajeh-Hosseini-
Dalasm et al. [243] combined a CL physical model and ANN to develop
a surrogate model to predict the cathode CL performance and activation
overpotential. For fast prediction of the multi-physics state of PEM fuel
cell, Wang et al. [244] developed a data-driven digital twinning frame-
work, as shown in Fig. 20. A database of temperature, gas reactant, and
water content fields in a PEM fuel cell under various operating condi-
tions was constructed using a 3D physical model. Both ANN and SVM
were used to solve the multi-physics data with spatial distribution char-
acteristics. The data-driven digital twinning framework mirrored the
distribution characteristics of multi-physics fields, and ANN and SVM
exhibited different prediction performances on different physics fields.

Application of machine learning in PEMFC performance prediction
has many distinct advantages, and it will continue to be popular in the
PEMFC community. However, as it does not require physical represen-
tation, skepticism remains that it may lose efficacy in scenarios that
are not included in the test data set. Developing a hybrid model that
combines physical process and machine learning, and encoding physi-
cal mechanisms into machine learning would improve the predictions of
fuel cell performance, dynamic behaviors, and physical state in complex
scenarios. There is a great potential to improve the current two-phase
models (e.g. the two-fluid and mixture approaches) of PEM fuel cells by
using Al technology, for example, machine learning analysis of visual-
ization data and VOF/LBM simulation results. Physics-informed neural
networks were recently proposed by Raissi et al. [174], known as hid-
den fluid mechanics (HFM), to encode the Navier-Stokes (NS) equation
into deep learning for analyzing fluid flow images, as shown in Fig. 21.
Such a strategy can be extended to the deep learning of two-phase flow
and fuel cell performance by incorporating relevant physics, such as the
capillary pressure correlation, Darcy’s law, and the Butler-Volmer equa-
tion, into the neural networks. Table 11 summarizes the main physics
in each PEMFC component that deep learning can incorporate to effec-
tively achieve the design targets.

4.3. Machine learning for material selection

Machine learning is widely used in the chemistry and material
communities to discover new material properties and develop next-
generation materials [245-247]. Experimental measurement, character-
ization and theoretical calculation are main traditional methods to di-
agnose or predict the properties of a material, which are usually ex-
pensive in terms of cost, time, and computational resources. Material
properties are influenced by many intricate factors, which increases the
difficulty level in the search for optimal material synthesis using only
traditional methods. Machine learning can assist in material selection

Fig. 19. Comparison of experimental database and

SVM ANN/SVM predictions [234].
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Fig. 21. Arbitrary training domain in the wake of a cylinder using Navier-Stokes (NS)-informed neural networks [174]: (A) Domain generating training data for
concentration and reference data for velocity and pressure using direct numerical simulation. (B) Training data on concentration c(t, x, y) in an arbitrary domain in
the shape of a flower located in the wake of the cylinder. The solid black square corresponds to a very refined point cloud of data, and the solid black star corresponds
to a low-resolution point cloud. (C) A physics-uninformed neural network (left) takes the input variables t, x, and y and outputs c, u, v, and p. By applying automatic
differentiation on the output variables, the transport and NS equations are encoded in the physics-informed neural networks e;, i = 1,..., 4 (right). (D) Velocity and
pressure fields regressed by means of hidden fluid mechanics (HFM). (E) Reference velocity and pressure fields obtained by removing the arbitrary domain in (A),
used for testing the performance of HFM. (F) Relative L, errors estimated for various spatiotemporal resolutions of observations for c. On the top line, the spatial
resolution for each case is listed; on the line below, the corresponding temporal resolution over 2.5 vortex shedding cycles is listed.

and property prediction using existing databases, which is advantageous
in taking into account unknown physics and greatly increasing the ef-
ficiency. As example, in the catalyst design absorbate binding energy
prediction by the empirical Sabatier principle is widely used for the op-
timization of activity in catalyst design (Fig. 22(a)) [247]. To remove the
empirical equation, a database of binding energy for different catalyst
structures constructed by characterization or theoretical calculation is
used to train a machine learning model, which shows a great efficiency

in predicting the catalyst activity in a wide range to identify the opti-
mal solution of the catalyst structure (Fig. 22(b)) [247]. Owing to the
great potentials of machine learning in chemistry and materials science,
professional tools have been developed, along with universal machine
learning frameworks, and numerous structure and property databases
for molecules and solids can be easily accessed to model training. Pop-
ular professional machine learning tools and databases are summarized
in Table 12 [224].
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Table 11
Major physics in PEM fuel cell for physics-informed machine learning.
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Component Major Physics for Machine Learning Design/Material Targets

PEM Ton transport (i). Improve durability, ionic conductivity, and mechanical robustness.
Water transport and uptake and dynamics (ii). Reduce cost and water dependence of ionic conductivity, and reduce
Subfreezing performance (ix). cross-overs of H2, 02, and N2.
PEM degradation mechanisms (x).
H2, 02, or N2 transport (iv)

CL Ion transport (i). Reduce PMG electrocatalyst loading and carbon corrosion.
Electrochemical reaction kinetics (iii). Improve electrocatalyst stability and durability, CL performance,
Oxygen/hydrogen transport in both pores and ionomer film (iv). water removal, oxygen transport, proton conductivity, and cold-start
Ice formation (ii), (viii). capability.
Electrocatalyst degradation mechanisms (X).
Two-phase flow (ii), (vii), (viii).

GDL/MPL Two-phase flow (ii), (vii), (viii). Improve water and thermal management.
Species transport (iv). Reduce electric ohmic loss and gaseous reactant transport resistance.
Heat transfer (v), (viii).
Electric current conduction (vi).
Phase change and heat pipe effects (ii), (viii).

GFCs Two-phase flow (ii), (vii), (viii). Evenly distribute gaseous reactants.
Droplet dynamics at GDL surface (vii). Mitigate fuel cell flooding. Reduce pumping power loss.
Heat transfer/electric current conduction for porous media flow
fields (v), (viii)/(vi).

BPs Heat transfer (v). Reduce material/fabrication cost.

Electric current conduction (vi).
Corrosion mechanisms.

Improve corrosion resistance.
Prevent leakage.
Reduce heat/electric resistance.

i) The Nernst-Planck equation.
ii) The water conservation equation, Eq. (3).
iii) Butler-volmer equation, Tafel equation.

iv) The conservation equation of 02, H2, and N2; Molecular Dynamics (MD) equations.

v) The energy conservation equation.

vi) Ohm’s law.

vii) Darcy’s law, Navier stokes equations, VOF, PNM, LBM, and Eq. (1-2)
viii) Phase change or Eq. (5).

ix) Eq. (6).

x) Eq. (7-16).
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Fig. 22. (a) Traditional method for predicting optimal catalyst activity by the empirical Sabatier principle, and (b) workflow of catalyst screening via machine

learning [247].

For catalyst optimization, Zhu et al. [248] combined the density
functional theory (DFT) computation and machine learning to efficiently
screen the property of dual-metal-site catalyst (DMSC) that increases the
ORR activity. They conducted DFT computation to predict a series of
catalysts, simplified these features, reserved the most relevant features
for the database, and trained the fitting equation between the ORR ac-
tivity and catalyst property. The basic workflow is shown in Fig. 23(a).
Gradient-boosted regression (GBR) was used as the machine learning
algorithm. Fig. 23(b) compares the values of reaction free energies of
OH* by the machine learning prediction and DFT computation, with a
low RMSE of 0.036 and a high R? of 0.993, demonstrating that the GBR
algorithm effectively trained the model to achieve accurate prediction.
As shown in Fig. 23(c), seven features most related to catalytic perfor-
mance in order of importance were given, including the electron affinity
of two metal atoms (EA1 and EA2), the sum of the vdW radius of two
metal atoms (R1 + R2), the difference in the Pauling electronegativity
between two metal atoms (|P1 — P2|), the product of ionization energy
of TM1 (IE1), the distance between two metal atoms (IE1 x L), the

sum of Pauling electronegativity of two metal atoms (P1 + P2), and
the average distance between TM1/TM2 atoms and the surrounding N
atoms ((d1+ d2 + d3 + d4 + d5 + d6)/6). In addition, machine learning
was also applied to material selection of battery electrodes [249], but
rarely to PEMFC materials of electrodes and membrane, which could be
a future research direction for the PEMFC community.

4.4. Machine learning for durability

A durable and stable PEM fuel cell that is reliable for the entire life
of the system is crucial for its commercialization. Thus, it is important
to predict the state of health (SoH), the remaining useful life (RUL), and
durability of PEM fuel cell using the data generated from monitoring
units [112, 250,251]. The cell voltage is the most important indicator
of fuel cell performance and thus is a popular output parameter in the
machine learning. In recent years, machine learning has been employed
to predict fuel cell durability and SoH, which can generally be classified
as model-based and data-driven approaches. The former method relies
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Table 12
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Publicly accessible professional machine-learning tools for chemistry and material, and structure and property databases for molecules and solids. The table is

developed following the format of that in Ref. [224] by adding additional information.

Name Description

URL

Machine learning tools for chemistry and material

Amp Package to facilitate machine learning for atomistic calculations https://bitbucket.org/andrewpeterson/amp
ANI Neural-network potentials for organic molecules with Python interface https://github.com/isayev/ASE_ANI
COMBO Python library with emphasis on scalability and efficiency https://github.com/tsudalab/combo
DeepChem Python library for deep learning of chemical systems https://deepchem.io
GAP Gaussian approximation potentials http://libatoms.org/Home/Software
MatMiner Python library for assisting machine learning in materials science https://hackingmaterials.github.io/matminer
NOMAD Collection of tools to explore correlations in materials datasets https://analytics-toolkit.nomad-coe.eu
PROPhet Code to integrate machine-learning techniques with quantum-chemistry approaches https://github.com/biklooost/PROPhet
TensorMol Neural-network chemistry package https://github.com/jparkhill/TensorMol
Computed structure and property databases
AFLOWLIB Structure and property repository from high-throughput ab initio calculations of http://aflowlib.org
inorganic materials
Computational Infrastructure to enable collection, storage, retrieval and analysis of data from https://cmr.fysik.dtu.dk
Materials electronic-structure codes
Repository
GDB Databases of hypothetical small organic molecules http://gdb.unibe.ch/downloads
Harvard Clean Computed properties of candidate organic solar absorber materials https://cepdb.molecularspace.org
Energy Project
Materials Project Computed properties of known and hypothetical materials carried out using a standard https://materialsproject.org
calculation scheme
NOMAD Input and output files from calculations using a wide variety of electronic structure https://nomad-repository.eu
codes
Open Quantum Computed properties of mostly hypothetical structures carried out using a standard http://ogmd.org
Materials Database calculation scheme
NREL Materials Computed properties of materials for renewable-energy applications https://materials.nrel.gov
Database
TEDesignLab Experimental and computed properties to aid the design of new thermoelectric http://tedesignlab.org
materials
ZINC Commercially available organic molecules in 2D and 3D formats https://zinc15.docking.org
Experimental structure and property databases
ChEMBL Bioactive molecules with drug-like properties https://www.ebi.ac.uk/chembl
ChemSpider Royal Society of Chemistry’s structure database, featuring calculated and experimental https://chemspider.com
properties from a range of sources
Citrination Computed and experimental properties of materials https://citrination.com
Crystallography Structures of organic, inorganic, metal-organic compounds and minerals http://crystallography.net
Open Database
CSD Repository for small-molecule organic and metal-organic crystal structures https://www.ccdc.cam.ac.uk
ICSD Inorganic Crystal Structure Database https://icsd.fiz-karlsruhe.de
MatNavi Multiple databases targeting properties such as superconductivity and thermal http://mits.nims.go.jp
conductance
MatWeb Datasheets for various engineering materials, including thermoplastics, semiconductors http://matweb.com
and fibres
NIST Chemistry High-accuracy gas-phase thermochemistry and spectroscopic data https://webbook.nist.gov/chemistry
WebBook
NIST Materials Repository to upload materials data associated with specific publications https://materialsdata.nist.gov
Data Repository
PubChem Biological activities of small molecules https://pubchem.ncbi.nlm.nih.gov
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Fig. 23. (a) Workflow of activity prediction and design of DMSC, and (b) comparison of the reaction free energy values of OH* by machine learning prediction and
DFT computation in the training set and test set, and (c) feature importance based on the mean impact value in Zhu et al.’s study [248].
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Table 13

Machine learning methods and their characteristics for PEMFC prognostics.
Method Characteristics References
Neural network Data-driven. Interconnected neurons are linked using weights. The weights are optimized during training. The unknown [252,253,260]
(NN) functions are determined using a large number of data. Its prediction is accurate but computationally expensive.
Adaptive Data-driven. Similar to the NN method. The membership functions and rules are used to connect different layers. [252,262]
neuro-fuzzy Computation is efficient. Prediction is reliable.
interface system
(ANIFS)
Grid long Data-driven. Compared to NN, LSTM avoids exploding gradients and vanishing problems and is suitable for long-term [253]
short-term prediction. Prediction accuracy can be optimized.
memory (G-LSTM)
recurrent neutral
network (RNN)
Summation- Data-driven. SW-ELM is the combination of NN and wavelet theory. It doesn’t require big data and is suitable for [254,266]
wavelet extreme prediction at frequent intervals.
learning machine
(SW-ELM)
Istm rnn with data-driven. combination with arima enables effective tracking of degradation tendency and reduces influence of the [255]
auto-regressive recovery phenomenon. its algorithm is simple and easy for online application.
integrated moving
average (arima)
gray neural data-driven. coupling with the gray theory enables use of limited historical data and is suitable for degradation [257]
network model involving nonlinear changes and many influencing factors.
(gnnm)
Particle filtering Model-based. Monte-Carlo technique is used to solve nonlinear Bayesian tracking for the probability distribution. It is [252,265]
(PF) time-consuming but addresses complex conditions.
Sparse auto Model-based and data-driven combination. SAE can extract prediction features automatically and NN is used to predict [260]
encoder (SAE) NN the RUL. It can predict dynamic conditions.
Moving window Model-based and data-driven combination. Both the fade trend and non-linear features are captured. It can iteratively [256]
method update the prediction when newly measured data become available
Self-organizing Unsupervised learning. Monitoring data are automatically visualized into a 2D space, thus it is easy and intuitive. It can [258]
maps (SOMs) be used to monitor the fuel cell SoH.
Echo State Supervised learning based on the principle of recurrent neural networks (RNNs). A nonlinear response signal is induced [261,264]

Network (ESN)

by driving random, large and fixed RNNs. A trainable combination of all these response signals is then used to obtain a

desired output signal. Such a method can reduce the error associated with the prediction of remaining life.

on physical or semi-empirical models, which can be computationally
expensive. The data-driven method uses historical data of a system to
predict the SoH and RUL. In the literature, both types of methods have
been investigated for the SoH and RUL prediction, including some stud-
ies that compare various algorithms. A summary of various ML meth-
ods employed for PEMFC prognostic and their characteristics is given in
Table 13.

Mao and Jackson [252] compared the ANN, the adaptive neuro-fuzzy
inference system (ANFIS), and the particle filtering (PF) method in the
PEMFC voltage and SoH prediction. It was shown that the ANFIS pro-
vides an accurate forecast at a low computation cost, and the PF is suit-
able for complex situations, such as fuel cell faults. Ma et al. [253] de-
veloped a novel data-driven deep learning model for degradation prog-
nostics using the grid long short-term memory (G-LSTM) recurrent neu-
ral network (RNN). Compared to traditional neural networks, the pro-
posed model effectively avoided exploding gradients and optimized pre-
diction accuracy. It is also easy to implement online due to its simple
structure and can be used for improving durability when coupled with a
proper control strategy. Javed et al. [254] presented a constraint-based
summation-wavelet extreme learning machine (SW-ELM) algorithm to
improve the robustness and applicability of data-driven prognostics. A
new SoH indicator was introduced to characterize the dynamic behav-
iors of a stack voltage and to further improve prediction accuracy. The
model also showed promise in estimating the RUL. Ma et al. [255] pro-
posed a LSTM RNN and an auto-regressive integrated moving average
(ARIMA) fusion method to predict fuel cell SoH. LSTM enabled effi-
cient prediction of long-term degradation, while the fusion with ARIMA
tracks degradation tendency. The model was validated against aging
experimental datasets from two PEM fuel cells and showed promise in
facilitating management strategy design and performance prediction be-
fore experimental tests. Zhou et al. [256] combined the model-based and
data-driven prognostic methods and used the moving window method
to train the models, update the weight factors, and further fuse the pre-

diction iteratively. The model-based approach predicted the aging trend
over a long period while the data-driven approach was used to describe
the local non-linear characteristics of voltage degradation. Thus, the pro-
posed hybrid prognostic approach simultaneously described the long-
term degradation and short-term voltage variation characteristics. Chen
et al. [257] proposed a gray neural network model (GNNM) method in
combination with the particle swarm optimization (PSO) and the mov-
ing window method. The effects of current density, inlet temperature,
inlet hydrogen pressure, and inlet RH were taken into account in the
model to better forecast degradation under various operating conditions.
They also investigated the influence of different moving window sizes
on degradation prediction. Onanena et al. [258] proposed an unsuper-
vised model to monitor fuel cell SoH via the electrochemical impedance
spectroscopy (EIS) data. Compared to supervised methods, the model
does not require a large amount of labeled data, and is efficient and
easy to implement. The model is based on self-organizing maps (SOMs),
which can be used to visually identify the main clusters in datasets and
correct eventual data mislabeling. Mayur et al. [259] coupled an FCEV
model with a cell-level catalyst degradation model to estimate durabil-
ity and provide insights into spatially resolved cell performance. The
effect of transient loading was investigated in terms of the cathode po-
tential, water/oxygen concentration, and spatial variation in the Pt dis-
solution rate in the cathode CL. It was found that the Pt dissolution rate
is high under low power demand and exhibits highly dynamic behav-
ior during a driving cycle. Liu et al. [260] developed a RUL prediction
technique for PEM fuel cells based on the sparse autoencoder (SAE) and
deep neural network (DNN). The SAE was used to extract the prediction
features automatically, while the DNN was applied to predict the RUL.
The Gaussian-weighted moving average filter was adopted to smooth
noisy data. The model prediction was compared with a total of 127,369
experimental data points, indicating an accuracy as high as 99.68%. In
addition, the model is capable of predicting the RUL under dynamic
conditions. Morando et al. [261] proposed a data-driven algorithm to



Table 14

Summary of recent machine learning studies on performance, dynamics, durability, SoH, and RUL of PEM fuel cells.

Machine Learning Targets for PEM fuel cells Remarks Reference

ANN Fuel cell performance (output voltage) prediction i Data points: 460 [233]
ii Data sources: experiment
iii Two-hidden-layer ANN.

ANN and SVM Fuel cell performance (output voltage) prediction i Data points:1377 [234]
ii Data sources: experiment
iii One-hidden-layer ANN
iv. ANN (R? of 0.999) outperforms SVM (R? of 0.980)

Linear regression; ANN Output voltage and efficiency prediction i Data points: 723 [235]
ii Data sources: experiment
iii Two-hidden-layer ANN

ANN; SVM Output voltage and efficiency prediction i Data points: 9527 [236]
ii Data sources: experiment
iii One-hidden-layer ANN
iv. SVM (R? of 0.99) outperforms ANN (R? of 0.97)

Hebbian learning Output voltage and efficiency prediction i Data points: 1000 [238]
ii Data sources: experiment

ANN Dynamic voltage prediction i Data sources: experiments [239]
ii Two-hidden-layer ANN

ANN Dynamic voltage prediction i Data sources: Matlab simulation using physics-based model [240]
ii Two-hidden-layer ANN

SVM Output voltage prediction at various CL compositions. i Data points: 65 [242]
ii Data sources: 3D physics-based simulation

ANN Activation overpotential at various CL compositions. i Data sources: 1D homogenous agglomerate simulation [243]
ii One-hidden-layer ANN

ANN; SVM Multi-physics fields of PEM fuel cells. i 100 case scenarios, and 7000 data points [244]
ii Data sources: 3D physics-based simulation
iii Two-hidden-layer ANN

Gradient-boosted ORR activity prediction of catalysts. i Data sources: simulation (DFT) [248]

regression ) )

ANN; Adaptive Fuel cell performance (output voltage) prediction with time for prognostics. 1 Data SQUFC'351 experiments [252]

neuro-fuzzy inference ii One-hidden-layer ANN

system (ANFIS) iii ANFIS has highest efficiency in computation time

Grid long short-term Fuel cell performance (output voltage) prediction and degradation. i Data sources: experiments (from three fuel cells) from 400 h testing [253]

memory recurrent neutral B each. )

network (G-LSTM-RNN) ii One-hidden-layer RNN
iii Sliding window size update

Summation-wavelet Fuel cell output voltage with time for degradation and RUL prognostics. 1 Data sources: stack experiments [254]

extreme learning machine
(SW-ELM)

70 A and 1155 h.

i Hourly voltage as a health indicator.

RUL is carried out in two groups, a prognostic task at initial 650 h and

updates every 10 h as new data.

(continued on next page)
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Table 14 (continued)

Machine Learning Targets for PEM fuel cells Remarks
Reference
Long short-term memory Fuel cell output voltage with time for degradation 1 Data sources: experiments [255]
recurrent neutral network ii 1000 h aging data at 0.7 Acm~2.
(LSTM-RNN) iii The voltage as an indicator of health.
a hybrid method which fuel cell output voltage with time for degradation i data sources: experiments [256]
combines a degradation ii the empirical model for long-term aging prediction and the narnn for
empirical model and nonlinear characteristics prediction of degradation.
non-linear autoregressive iii a moving window method for the hybrid prognostic approach.
neural network (narnn) iv 400 h aging data for training and testing.
gray neural network (gnn) fuel cell output voltage with time for degradation i data sources: experiments [257]
ii a moving window method for iterative training.
iii 800 h aging data for studying different moving window sizes &
prediction capability.
iv 550 h data at 70 a for predicting degradation.
Self-organizing maps Fuel cell SoH monitor using the EIS data i An unsupervised method to visually identify the main clusters in [258]
(SOMs) datasets and correct eventual data mislabeling
ii 11 data points are used
Sparse autoencoder (SAE) Remaining life prediction (RUL) i 1.~100k data for validation [260]
and deep neural network ii Experimental stack data (V & I) per hour.
(DNN) iii SAE extracts the prediction features automatically, and DNN realizes the
RUL prediction.
Echo State Network (ESN) Fuel cell output voltage with time for degradation i Data sources: experiments [261]
ii 1000 h aging data
iii Data is smoothed prior to use
iv 900 h data for training.
Adaptive neuro-fuzzy Fuel cell output voltage with time for degradation i Data sources: experiments [262]
inference system ii Hurst coefficient and the wavelet transform were used to filter the
signals.
iii The algorithm is divided into two parts, filtering and prognosis
iv 1700 h data are used for prediction and testing.
Echo State Network (ESN) RUL prognostics. i Data sources: experiments [264]
ii 1000 h aging data.
iii iii. Direct and parallel forecasts are used.
Summation-wavelet RUL prognostics. i Data sources: stack experiments [266]
extreme learning machine ii Two sets of data including dynamic and stationary operations with
(SW-ELM) 1000 h data each.

iii 168 h data for learning; the rest for testing.
iv 4 predictive models were tested.
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Fig. 24. Prediction of the PEMFC power signal. The red and blue lines represent
the prediction and the actual signal, respectively [266].

predict evolution of PEMFC performance and occurrence of a fault. The
echo state network was applied in the model to reduce prediction error.
Silva et al. [262] developed an algorithm based on ANFIS to forecast
the voltage decay due to degradation. The algorithm architecture and
parameter selection were investigated for prediction accuracy and appli-
cability. Input signal data were divided into normal operation and exter-
nal perturbations. The latter were unpredictable, and therefore were not
used to train the ANFIS. It was shown that the ANFIS is well adapted to
time-series prediction, particularly to degradation. Javed et al. [263] re-
ported that prediction accuracy is determined by the features extracted
from raw data, and the usefulness of the data is highly dependent on
the variability of phenomena. A new processing method was proposed
by applying trigonometric functions and cumulative transformation to
better extract and select data. Morando et al. [264] applied a reservoir
computing tool, the echo state network (ESN), as a prognostics system to
quickly and accurately estimate the RUL. The ESN has the same model-
ing capability as a RNN with high computation efficiency. The accuracy
and complexity of the network were found to be dependent on the ESN
parameters and design. Jouin et al. [265] built a prognostics framework
that can accurately estimate the RUL without assumptions on PEMFC be-
haviors. The framework is based on the particle filtering approach with
an accuracy of + 90 h in a 1000-h lifetime. They also showed that a
model with both a logarithmic and a linear component is more efficient
than a simple linear model. Ibrahim et al. [266] proposed a discrete
wavelet transform (DWT)-based univariate prognostic model to provide
an online prediction without exogenous data. The main advantage is
that the prediction only used past information from a univariate time
series and is therefore easy to implement in practice. Fig. 24 shows an
example of the model prediction of fuel cell power evolution in compar-
ison with actual data. Table 14 briefly summarizes the machine learning
studies in PEM fuel cells in this review.

5. Summary and concluding remarks

In this review, we summarize the latest status of PEM fuel cells in
portable, small stationary, and transportation power applications, dis-
cuss important fundamentals related to fuel cell materials, design, con-
trol, and durability, and explain machine learning, physics-informed
deep learning, and artificial intelligence (AI) in energy applications and
their great potentials in advancing PEMFC technology.

As of December 2019, more than 19,000 commercial FCEVs have
been deployed in the U.S., Japan, South Korea, Europe, and China, and
over 340 HFRs were available to serve these FCEVs. The Hyundai Nexo
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and Toyota Mirai are two models of FCEVs and account for about 63%
and 32% of total sales, respectively, in 2019. By 2030, Japan, South
Korea, and China plan to deploy ~0.85, 0.8, and 1 million FCEVs, and
build ~1200, 900, and 1000 HFRs, respectively. In the U.S., more than
30 FVEBs are operated, serving approximately 17 million passengers
by 2017. Most of them have achieved or nearly met the ultimate tar-
get of 25,000 h. In Europe, about 100 FCEB demonstrations have been
completed across the continent, with the achievement of 35,000 h by a
Ballard fuel cell stack. In the portable sector, PEM fuel cell units have
been developed as electric charger and power sources for drones, wear-
ables, and military purposes. The backup power and small stationary
power generation of PEM fuel cells have been rapidly growing in recent
years. Co-gen fuel cell units can reach over 80% efficiency for power
and thermal energy utilization.

Despite great progress in commercialization, cost and durability are
still the two main barriers to worldwide deployment. It is challenging to
achieve the durability target under the PGM loading target by set by the
DOE. Although FCEVs and FCEBs have met the 3000 h real-world driv-
ing test and ultimate target of 25,000 h, respectively, they are still much
more expensive than conventional fossil-fuel based vehicles. The Toy-
ota Mirai costs 100-200% more than a common gasoline vehicle, even
after large governmental incentives. The current cost for an FCEV is ap-
proximately $45/kW, almost 50% higher than the ultimate DOE target
($30/kW). A FCEB currently costs approximately 1 million dollars, even
at a production volume of 40.

Fundamentals are crucial in overcoming major barriers and further
advancing PEM fuel cell technology for high performance. New PEM
materials, low PGM-loading, and non-PGM catalysts are important for
reducing fuel cell cost. Two-phase flow in porous components such as
CLs, GDLs, and GFCs must be effectively managed to ensure high perfor-
mance and durability. Fuel cell dynamics must be understood in prac-
tice for control strategy and health monitoring. Cold-start capability is
important for transportation and portable applications in freezing en-
vironments, requiring physics of ice production and thermal behaviors
involving phase change, and their interaction with the electrochemical
reaction.

Machine learning and artificial intelligence (AI) are powerful tools
for energy and material R&D, and have been growing rapidly in recent
years. Machine learning and Al have great potential to advance PEMFC
technology to reduce cost and improve durability/performance, and are
advantageous in computation efficiency and taking into account the
effects of physics that are yet unknown or formulated, but contained
in training databases. They have been applied to predict PEMFC per-
formance, optimize cell design, and selection/optimization of catalyst,
and showed a great promise in developing fundamental correlations for
two-phase flow and material properties, analyzing ex-/in-situ images of
PEMFC operation, and facilitating advanced model development using
imaging data or physics-informed deep learning that encodes flow equa-
tions, capillary pressure correlations, and dimensionless parameters into
the neural networks. They can also be applied to predict fuel cell dynam-
ics, SoH/RUL monitoring, and durability enhancement through analysis
of real-time data and incorporation of dynamic characteristics and key
parameters in neural network learning, and assist in developing con-
trol strategies to meet loading requirements, enable cold start, optimize
operation based on real-time monitoring, and mitigate material degra-
dation. Main physics and fundamentals in PEM fuel cells were summa-
rized for physics-informed deep learning, along with the major public
resources of machine learning databases and tools for materials and
chemistry.
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