MAE91 INTRODUCTION TO THERMODYNAMICS

Catalog Data:	Introduction to Thermodynamics Thermodynamic principles; open and closed systems representative of engineering problems. First and second law of thermodynamics with applications to engineering systems and design. Prerequisite: Physics 7C, Mathematics 2D.
Textbooks:	Claus Borgnakke, Richard E. Sonntag, Fundamentals of Thermodynamics, 2012.
References:	Yunus A. Çengel, Michael A. Boles, Thermodynamics: An Engineering Approach, 1989.
Instructor:	Prof. Wang (office TBD) email: <u>yunw@uci.edu</u> Office Hour: 5-10 min in class
Course Outcomes:	 Identify the control mass and control volume in a thermodynamics problem Calculate properties of pure substances (in three phases) and ideal gases, and use Tables of properties Map different processes on T-v and P-v diagrams Apply the first law of thermodynamics (conservation of energy) to control mass and control volume processes Map different processes on T-s (temperature-entropy) diagram for control mass and control volume Understand the Carnot (ideal) thermodynamic cycle and the limits on the thermal efficiency of real thermodynamic cycles Apply both the first law and second law
Prerequisites By Topic:	Calculus in Two- and Three Dimensions Fundamental Physics
Lecture Topics:	Concepts, definitions, units Pressure, specific volume Temperature: equality, inequality, Zeroth Law Pure substance, T-v, P-v, P-v-T phase diagrams Ideal gas, Equation of state Work, Heat First law for a system First law for a control volume Steady and unsteady flow processes Reversible and irreversible processes The entropy concept and the second law Entropy as a property Macroscopic evaluation of entropy Second law for a control mass Entropy relations
Grading Criteria:	Homework: 15% Midterm: 0% Attendance: 5% Quiz: 10% Participation: 5% Final Exam: 65% Total: 100%