CONDUCTION HEAT TRANSFER SYLLABUS

Catalog Data:	MAE220: Conduction Heat Transfer (Credit Units: 3). Steady state and transient conduction heat transfer in one- and multi-dimensional geometries. It emphasizes analytical methods, exact and approximate. Numerical techniques are also included. Prerequisite: MAE120.
Textbooks:	 Heat Conduction, 2nd Edition, M. Necati Özisik, John Wiley & Sons Inc. 1993.
References:	 Conduction Heat Transfer, Vedat S. Arpaci, Prentice Hall, 1984.
	 Conduction of Heat in Solids, 2nd Edition, Carslaw, H.S. and J.C. Jaeger, Oxford University Press, 1986.
	• Conduction Heat Transfer, Poulikakos, D., Prentice-Hall, 1994.
	• <i>Heat Conduction, 3rd Edition,</i> Kakac, S. and Y. Yener, Taylor & Francis, 1993.
	 Analytical Methods in Conduction Heat Transfer, Myers G.E., AMCHT Publications, 2nd edition, 1998.
	 Nanoscale Energy Transport and Conversion, G. Chen, Oxford, 2005.
	 Nano/Microscale Heat Transfer, Z.M. Zhang, McGraw-Hill, 2007.
Instructor:	Prof. Wang (4231EG) email: <u>yunw@uci.edu</u>
Class info:	Room: <u>DBH 1431</u> Day & time: T T 12:30 pm to 1:50 pm
	Office hours: T T 11:10 am to $12:00 \text{ pm}$
Course Outcomes:	Students will be able to:
	• Understand heat conduction phenomena in solid.
	• Derive the heat conduction equation from basic principles and simplify it for a given application.
	• Identify and apply proper boundary conditions.
	• Apply the principle of superposition to problems.
	• Use the separation of variables method to solve 2-D steady state problems and 1-D unsteady state problems
	 Use the Green's function and LaPlace transform methods to
	solve heat conduction problems.
	• Develop finite difference formulations for steady/unsteady state problems.

Prerequisites By Topic:	Heat Transfer MAE 120
Lecture Topics:	 Introduction to heat transfer Heat conduction equation, boundary/initial conditions lumped system formulation, and normalization. Solution to ODEs and Bessel functions SOV (Separation of variables). Superposition and applications of Duhamel's theorem. Green's function approach and Laplace transforms. Fourier transform and similarity Finite difference methods. Phase-change problems. Moving heat source problems. Others. * some topics may not be covered in class.
Class Schedule:	Each class meets 3 hours per week for 10 weeks.
Computer Usage:	Used for homework problems (Fortran/C, Matlab and Mathcad) and homework writing (Word, Excel).
Class Projects:	A project will be given around 7th week. Each student must individually complete a project related to heat conduction and submit his/her project report.
Professional Component:	Contributes toward the Mechanical Engineering Topics courses.
Relationship to Program Outcomes:	This course relates to the MAE Graduate Program as stated at: http://mae.eng.uci.edu/grad/graduate_program.html
Design Content Description	
Grading Criteria:	Homework: 20% Midterm: 20% Final: 40% Project: $\frac{20\%}{100\%}$

Prepared by Prof. Y. Wang Jan. 2013