Winter

Office/phone: EG4231/824-6004

ENGRMAE 117 SOLAR AND RENEWABLE ENERGY SYSTEMS

Catalog Data:	ENGRMAE 117 Solar and Renewable Energy Systems (Credit Units: 4) Basic principles, design, and operation of solar and other renewable energy systems including solar photo-voltaic, solar thermal, wind, and hydrogen technology (e.g. fuel cell/electrolyzer). Prerequisite: MAE91 Thermodynamics (Design units: 1).	
Textbooks:	Required: Kreith, Frank, and Susan Krumdieck. Principles of Sustainable Energy Systems. CRC Press, 2013.	
References:	 Cha, Suk-Won, Whitney Colella, and Fritz B. Prinz. "Fuel Cell Fundamentals." (2006) (reserved). Y. Wang, K.S. Chen, and S. C. Cho, PEM Fuel Cells: Thermal and Water Management Fundamentals, Momentum Press, 2013 (reserved). Ali, Mohd Hasan. Wind Energy Systems: Solutions for Power Quality and Stabilization. CRC Press, 2012 (available online). 	
Instructor:	Prof. Wang (4231EG) email: <u>yunw@uci.edu</u> Office Hour: MW 11:00-11:45 Am TA: Yiheng Pang: yihengp@uci.edu; Daniela Fernanda Ruiz Diaz: druizdia@uci.edu	
Course Outcomes:	Students will be able to:1. Understand the basic principles of design and operation of solar, wind, and PEM fuel cell.2. Apply those principles to a wide variety of renewable systems and applications.3. Calculate thermodynamic efficiencies, and design system cycles in the construct of key performance goals.	
Prerequisites By Topic:	Introduction to Thermodynamics (MAE 91)	
Lecture Topics:	Introduction to Renewable Energy Fundamentals of Solar Radiation Solar Photo-voltaic Cells Solar Heating and Cooling Solar Process Heat and Thermal Power Wind Energy H2 Economy, Fuel Cell, and Batteries	(~3 hours) (~3 hours) (~3 hours) (~3 hours) (~4.5 hours) (~9.5 hours)
Class Schedule:	Each class meets \sim 3 hours per week for 10 weeks	
Design Content Description	Project 1 is to review journal papers related to solar, wind, or PEM fuel cell.Project 2 is to solve an energy-related problem at UCI.Lectures: 100%Laboratory Portion: 0%	
Grading Criteria:	Problem Sets Class Project 1 Class Project 2 Others (e.g. quiz, attendance) Final	25% 12.5% 22.5% 5% <u>35%</u> 100%

Prepared by Prof. Wang