MAE-295

Spring 2011 Office/phone: EG4231/824-6004

FUNDAMENTALS OF MULTIPHASE TRANSPORT SYLLABUS

Catalog Data:	MAE295: FUNDAMENTALS OF MULTIPHASE TRANSPORT (Credit Units: 4). Through this course, a student will be able to: Analyze and characterize multiphase systems; Appreciate the role of structure in multiphase flows and the role it plays in obtaining engineering solutions; Understand what assumptions may be made to simplify multiphase transport and when they might be employed; Understand the limitations of the modeling of multiphase transport. A great deal of effort will be placed on averaging, droplet dynamics, flow patterns, flow in porous media, and sprays. Prerequisite: MAE130A and 120.
Textbooks:	✤ Fundamentals of Multiphase Flow, C. E. Brennen, Cambridge University Press, (2005).
References:	 Multiphase Flow Handbook, Clayton T. Crowe, CRC Press; 1 edition (September 19, 2005). Interfacial Phenomena: Equilibrium and Dynamic Effects, C.A. Miller and P. Neoqi, CRC Press; 2 edition (October 8, 2007). Two-Phase Flow and Heat Transfer, P.B. Whalley, Oxford (1996). Thermo-fluid Dynamics of Two-Phase Flow, M. Ishii and T. Hibiki, Springer (November 29, 2005). Essentials of Multiphase Flow in Porous Media, George F. Pinder and William G. Gray, Wiley-Interscience (August 4, 2008). Two-phase Flow in Complex System, S. Levy, Wiley-Interscience; 1 edition (August 2, 1999).
Instructor:	Prof. Wang (4231EG) email: <u>yunw(<i>a</i>)uci.edu</u>
Time:	T TH: 12:30pm to 1:50pm
Course Outcomes:	Students will be able to:(1) Demonstrate a fundamental understanding of multiphase transport phenomena;(2) Apply these fundamentals to engineering applications such as thermal/power systems.
Prerequisites By Topic:	MAE130A: Introduction to Fluid Mechanics; MAE 120: Heat Transfer
Lecture Topics:	 (1) Introduction to multiphase transport phenomena (2) The governing equations (Local Instant Formation and Averaged balance equations) (3) Droplet/Bubble Dynamics (surface tension, Work of adhesion and cohesion, droplet removal, Rayleigh-Plesset equation)

	 (4) Flow patterns (5) Flow in porous media (Disperflows) (6) Spray systems (Capillary prefl-D analysis) (7) Makin land 	rse, Separated, Annulus and Slug ssure, Relative permeability, and
	(7) Multiphase transport and heat(8) Modeling such as the VOF an	d LBM
Class Schedule:	Each class meets ~3 hours per week fe	or 10 weeks.
Computer Usage:	Data analysis (Excel, Matlab, Math LaTex).	cad), and report writing (Word,
Professional Component:	Contributes toward the Mechanical Engineering Topics courses.	
Relationship to Program Outcomes:	This course relates to the MAE Graduate Program as stated at: <u>http://mae.eng.uci.edu/grad/graduate_program.html</u> The course provides practical engineering issues related to thermal transport which reinforce, amplify, and extend the concepts of thermodynamics, fluid flow, mass transport, and heat transfer.	
Design Content Description		
Grading Criteria:	HWs: Class Project: Final:	20% 40% <u>40%</u> 100%

Prepared by Prof. Yun Wang Mar. 2011